THE FERMAT-TORRICELLI PROBLEM IN NORMED SPACES

被引:0
作者
Ilyukhin, Daniil A. [1 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Dept Differential Geometry & Applicat, Moscow, Russia
来源
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS | 2024年 / 39卷 / 05期
关键词
Fermat-Torricelli problem; norming functional; normed space; regular polyhedra;
D O I
10.22190/FUMI240926065I
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The article studies a generalization of the classical Fermat-Torricelli problem to normed spaces of arbitrary finite dimension. Given integer n, we describe all normed spaces such that the solution of the Fermat-Torricelli problem is unique for any n points in this space. More precise conditions for normed planes and three-dimensional spaces are presented. In addition, we apply the criterion to norms whose unit balls are regular polyhedra.
引用
收藏
页码:943 / 958
页数:16
相关论文
共 17 条
[1]   THE ALGEBRAIC DEGREE OF GEOMETRIC OPTIMIZATION PROBLEMS [J].
BAJAJ, C .
DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (02) :177-191
[2]  
BANNIKOVA A. G., 2016, Journal of Mathematical Sciences, V214, P593
[3]  
Boltyanski V., 1999, GEOMETRIC METHODS OP
[4]   On the history of the Euclidean Steiner tree problem [J].
Brazil, Marcus ;
Graham, Ronald L. ;
Thomas, Doreen A. ;
Zachariasen, Martin .
ARCHIVE FOR HISTORY OF EXACT SCIENCES, 2014, 68 (03) :327-354
[5]  
Cieslik D., 1988, Optimization, V19, P485, DOI 10.1080/02331938808843367
[6]  
COCKAYNE E. J., 1969, Math. Mag., V42, P206, DOI 10.1080/0025570X.1969.11975961.3.1
[7]  
Nguyen SD, 2018, Arxiv, DOI arXiv:1806.04296
[8]   GEOMETRICAL PROPERTIES OF THE FERMAT-WEBER PROBLEM [J].
DURIER, R ;
MICHELOT, C .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1985, 20 (03) :332-343
[9]  
ILYUKHIN D. A., 2022, arXiv
[10]  
IVANOV A. O., 2002, Izvestiya: Mathematics, V66, P905, DOI 10.1070/IM2002v066n05ABEH000402