Integral points on moduli schemes

被引:0
作者
von Kanel, Rafael [1 ]
机构
[1] Tsinghua Univ, IAS, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Diophantine equations; Heights; Effective; ELLIPTIC-CURVES; ABELIAN-VARIETIES; DIOPHANTINE EQUATIONS; SHAFAREVICH CONJECTURE; FINITENESS THEOREM; LINEAR-EQUATIONS; EXPLICIT BOUNDS; ABC CONJECTURE; GOOD REDUCTION; J-INVARIANT;
D O I
10.1016/j.jnt.2024.07.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The strategy of combining the method of Faltings (Arakelov, Par & scaron;in, Szpiro) with modularity and Masser-W & uuml;stholz isogeny estimates allows to explicitly bound the height and the number of the solutions of certain Diophantine equations related to integral points on moduli schemes of abelian varieties. In this paper we survey the development and various applications of this strategy. (c) 2024 Published by Elsevier Inc.
引用
收藏
页码:167 / 237
页数:71
相关论文
共 50 条
[31]   Integral points on elliptic curves and 3-torsion in class groups [J].
Helfgott, H. A. ;
Venkatesh, A. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 19 (03) :527-550
[32]   Elliptic curves over function fields with a large set of integral points [J].
Conceicao, Ricardo P. .
ACTA ARITHMETICA, 2013, 161 (04) :351-370
[33]   On the representation of the number of integral points of an elliptic curve modulo a prime number [J].
Rassias, Michael T. .
RAMANUJAN JOURNAL, 2015, 36 (03) :483-499
[34]   Finding integral points on elliptic curves over imaginary quadratic fields [J].
Jha, Aashraya .
RESEARCH IN NUMBER THEORY, 2025, 11 (01)
[35]   On the representation of the number of integral points of an elliptic curve modulo a prime number [J].
Michael T. Rassias .
The Ramanujan Journal, 2015, 36 :483-499
[36]   BOUNDING THE j-INVARIANT OF INTEGRAL POINTS ON Xns+(p) [J].
Bajolet, Aurelien ;
Sha, Min .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (10) :3395-3410
[37]   Bounding the j-invariant of integral points on certain modular curves [J].
Sha, Min .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (06) :1545-1551
[38]   Triangles with two integral sides [J].
Tengely, Szabolcs .
ANNALES MATHEMATICAE ET INFORMATICAE, 2007, 34 :89-95
[39]   Singular moduli that are algebraic units [J].
Habegger, Philipp .
ALGEBRA & NUMBER THEORY, 2015, 9 (07) :1515-1524
[40]   Rational points on some elliptic surfaces [J].
Jabara, Enrico .
ACTA ARITHMETICA, 2012, 153 (01) :93-108