Duality and hidden symmetry breaking in the q-deformed Affleck-Kennedy-Lieb-Tasaki model

被引:0
|
作者
Franke, Tyler [1 ]
Quella, Thomas [1 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
来源
SCIPOST PHYSICS CORE | 2024年 / 7卷 / 04期
关键词
QUANTUM SPIN CHAINS; BOND GROUND-STATES; Q-DEFORMATIONS;
D O I
10.21468/SciPostPhysCore.7.4.078
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We revisit the question of string order and hidden symmetry breaking in the q-deformed AKLT model, an example of a spin chain that possesses generalized symmetry.We first argue that the non-local Kennedy-Tasaki duality transformation that was previously proposed to relate the string order to a local order parameter leads to a non-local Hamiltonian and thus does not provide a physically adequate description of the symmetry breaking. We then present a modified non-local transformation which is based on a recently developed generalization of Witten's Conjugation to frustration-free lattice models and capable of resolving this issue.
引用
收藏
页数:28
相关论文
共 36 条
  • [21] Universal measurement-based quantum computation with spin-2 Affleck-Kennedy-Lieb-Tasaki states
    Wei, Tzu-Chieh
    Raussendorf, Robert
    PHYSICAL REVIEW A, 2015, 92 (01):
  • [22] Angular-time evolution for the Affleck-Kennedy-Lieb-Tasaki chain and its edge-state dynamics
    Nakajima, Koutaro
    Okunishi, Kouichi
    PHYSICAL REVIEW B, 2022, 106 (13)
  • [23] Two-dimensional Affleck-Kennedy-Lieb-Tasaki state on the honeycomb lattice is a universal resource for quantum computation
    Wei, Tzu-Chieh
    Affleck, Ian
    Raussendorf, Robert
    PHYSICAL REVIEW A, 2012, 86 (03)
  • [24] Measurement-based quantum computation with an optical two-dimensional Affleck-Kennedy-Lieb-Tasaki state
    Liu, Kai
    Li, Wen-Dong
    Gu, Yong-Jian
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2014, 31 (11) : 2689 - 2695
  • [25] Demonstrating the Affleck-Kennedy-Lieb-Tasaki Spectral Gap on 2D Degree-3 Lattices
    Pomata, Nicholas
    Wei, Tzu-Chieh
    PHYSICAL REVIEW LETTERS, 2020, 124 (17)
  • [26] Quantum antiferromagnetic Heisenberg half-odd-integer spin model as the entanglement Hamiltonian of the integer-spin Affleck-Kennedy-Lieb-Tasaki states
    Rao, Wen-Jia
    Zhang, Guang-Ming
    Yang, Kun
    PHYSICAL REVIEW B, 2016, 93 (11)
  • [27] Entanglement spectra of the two-dimensional Affleck-Kennedy-Lieb-Tasaki model: Correspondence between the valence-bond-solid state and conformal field theory
    Lou, Jie
    Tanaka, Shu
    Katsura, Hosho
    Kawashima, Naoki
    PHYSICAL REVIEW B, 2011, 84 (24):
  • [28] Quantum computational universality of the Cai-Miyake-Dur-Briegel two-dimensional quantum state from Affleck-Kennedy-Lieb-Tasaki quasichains
    Wei, Tzu-Chieh
    Raussendorf, Robert
    Kwek, Leong Chuan
    PHYSICAL REVIEW A, 2011, 84 (04):
  • [29] Emergent infinite-randomness fixed points from the extensive random bipartitions of the spin-1 Affleck-Kennedy-Lieb-Tasaki topological state
    Lu, Min
    Rao, Wen-Jia
    Narayanan, Rajesh
    Wan, Xin
    Zhang, Guang-Ming
    PHYSICAL REVIEW B, 2016, 94 (21)
  • [30] Entanglement of exact excited states of Affleck-Kennedy-Lieb-Tasaki models: Exact results, many-body scars, and violation of the strong eigenstate thermalization hypothesis
    Moudgalya, Sanjay
    Regnault, Nicolas
    Bernevig, B. Andrei
    PHYSICAL REVIEW B, 2018, 98 (23)