Duality and hidden symmetry breaking in the q-deformed Affleck-Kennedy-Lieb-Tasaki model

被引:0
|
作者
Franke, Tyler [1 ]
Quella, Thomas [1 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
来源
SCIPOST PHYSICS CORE | 2024年 / 7卷 / 04期
关键词
QUANTUM SPIN CHAINS; BOND GROUND-STATES; Q-DEFORMATIONS;
D O I
10.21468/SciPostPhysCore.7.4.078
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We revisit the question of string order and hidden symmetry breaking in the q-deformed AKLT model, an example of a spin chain that possesses generalized symmetry.We first argue that the non-local Kennedy-Tasaki duality transformation that was previously proposed to relate the string order to a local order parameter leads to a non-local Hamiltonian and thus does not provide a physically adequate description of the symmetry breaking. We then present a modified non-local transformation which is based on a recently developed generalization of Witten's Conjugation to frustration-free lattice models and capable of resolving this issue.
引用
收藏
页数:28
相关论文
共 36 条
  • [1] Symmetry-protected topological phases beyond groups: The q-deformed Affleck-Kennedy-Lieb-Tasaki model
    Quella, Thomas
    PHYSICAL REVIEW B, 2020, 102 (08)
  • [2] Entanglement spectra of the q-deformed Affleck-Kennedy-Lieb-Tasaki model and matrix product states
    Santos, R. A.
    Paraan, F. N. C.
    Korepin, V. E.
    Kluemper, A.
    EPL, 2012, 98 (03)
  • [3] Phase transitions of a two-dimensional deformed Affleck-Kennedy-Lieb-Tasaki model
    Pomata, Nicholas
    Huang, Ching-Yu
    Wei, Tzu-Chieh
    PHYSICAL REVIEW B, 2018, 98 (01)
  • [4] Efficient verification of Affleck-Kennedy-Lieb-Tasaki states
    Chen, Tianyi
    Li, Yunting
    Zhu, Huangjun
    PHYSICAL REVIEW A, 2023, 107 (02)
  • [5] Existence of a Spectral Gap in the Affleck-Kennedy-Lieb-Tasaki Model on the Hexagonal Lattice
    Lemm, Marius
    Sandvik, Anders W.
    Wang, Ling
    PHYSICAL REVIEW LETTERS, 2020, 124 (17)
  • [6] Bulk and edge dynamics of a two-dimensional Affleck-Kennedy-Lieb-Tasaki model
    Liu, Zenan
    Li, Jun
    Huang, Rui-Zhen
    Yan, Zheng
    Yao, Dao-Xin
    PHYSICAL REVIEW B, 2022, 105 (01)
  • [7] Finite-size scaling analysis of two-dimensional deformed Affleck-Kennedy-Lieb-Tasaki states
    Huang, Ching-Yu
    Lu, Yuan-Chun
    Chen, Pochung
    PHYSICAL REVIEW B, 2020, 102 (16)
  • [8] Spectral gaps of Affleck-Kennedy-Lieb-Tasaki Hamiltonians using tensor network methods
    Garcia-Saez, Artur
    Murg, Valentin
    Wei, Tzu-Chieh
    PHYSICAL REVIEW B, 2013, 88 (24)
  • [9] Topology and criticality in the resonating Affleck-Kennedy-Lieb-Tasaki loop spin liquid states
    Li, Wei
    Yang, Shuo
    Cheng, Meng
    Liu, Zheng-Xin
    Tu, Hong-Hao
    PHYSICAL REVIEW B, 2014, 89 (17):
  • [10] Quantum computational universality of Affleck-Kennedy-Lieb-Tasaki states beyond the honeycomb lattice
    Wei, Tzu-Chieh
    PHYSICAL REVIEW A, 2013, 88 (06):