facile and efficient recovery method of valuable metals from spent lithium-ion batteries via simultaneous leaching and separation strategy

被引:0
|
作者
Li, Donghui [1 ]
Feng, Shuyao [1 ]
He, Chao [2 ]
Men, Lijuan [1 ]
Li, Jiangshuo [1 ]
Zhang, Jiafeng [3 ]
Zhou, Yefeng [1 ]
机构
[1] Xiangtan Univ, Chem Proc Simulat & Optimizat Engn Res Ctr, Natl & Local United Engn Res Ctr Chem Proc Simulat, Minist Educ, Xiangtan 411100, Peoples R China
[2] Tampere Univ, Fac Engn & Nat Sci, Korkeakoulunkatu 8, Tampere 33720, Finland
[3] Cent South Univ, Sch Met & Environm, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Spent lithium-ion batteries; Valuable metals; Hydrometallurgical recovery; Simultaneous leaching and separation; Facile and efficient recovery method;
D O I
10.1016/j.wasman.2025.01.036
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Traditional hydrometallurgical recycling methods present challenges including complex processes, significant metal loss, and high costs. To address these issues, this work introduces a facile and efficient recycling method for spent ternary cathode materials, which combines acid leaching and oxidation as well as ammonia leaching. Firstly, careful control of the phosphoric acid concentration and sodium persulfate dosage allows for the selective leaching of Li and Ni in the process of acid leaching and oxidation, and thus their leaching efficiencies can reach as high as 99.3 % and 97.2 % respectively. Meanwhile, Co and Mn can be separated in the form of Co3O4 and MnO2 remaining in the waste residues. Secondly, based on the stability difference of complexes formed by cobalt and manganese with ammonia, Co can be selectively leached from waste residue through ammonia leaching, with the leaching efficiency reaching 93.2 %, while Mn is separated via reacting with CO32- in the solution to form MnCO3. Moreover, the mechanisms of selectively leaching Li and Ni during acid leaching and oxidation processes are revealed using characterization techniques such as XRD, ICP, SEM-EDS, and thermodynamic analysis. Finally, economic analysis shows that the benefits of this approach in terms of battery reuse are considerable, and there are clear advantages in terms of process simplification and operational safety. Compared to traditional hydrometallurgical recovery methods, which typically involve sequential separation after metal leaching, the proposed method achieves simultaneous leaching and separation of metals, thereby simplifying the recovery process and reducing metal losses.
引用
收藏
页码:220 / 230
页数:11
相关论文
共 50 条
  • [11] Review on hydrometallurgical recovery of valuable metals from spent lithium-ion batteries
    Xu, Zhenghe
    Liu, Zhenda
    Wang, Shubin
    Lu, Zhouguang
    Zhang, Zuotai
    Wang, Hao
    Jiang, Feng
    Zhongguo Kuangye Daxue Xuebao/Journal of China University of Mining and Technology, 2022, 51 (03): : 454 - 465
  • [12] A sustainable process for the recovery of valuable metals from spent lithium-ion batteries
    Fan, Bailin
    Chen, Xiangping
    Zhou, Tao
    Zhang, Jinxia
    Xu, Bao
    WASTE MANAGEMENT & RESEARCH, 2016, 34 (05) : 474 - 481
  • [13] Effect of electric field on leaching valuable metals from spent lithium-ion batteries
    Yang, Jian
    Zhou, Yuan
    Zhang, Zong-liang
    Xu, Kai-hua
    Zhang, Kun
    Lai, Yan-qing
    Jiang, Liang-xing
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2023, 33 (02) : 632 - 641
  • [14] Leaching Kinetics of Valuable Metals from Calcined Material of Spent Lithium-Ion Batteries
    Wongnaree, Natcha
    Patcharawit, Tapany
    Yingnakorn, Tanongsak
    Khumkoa, Sakhob
    ACS OMEGA, 2024, 9 (47): : 46822 - 46833
  • [15] Recovery and Separation of Valuable Metals from Cathode Materials of Spent Lithium-Ion Batteries (LIBs) by Ion Exchange
    Chiu, Kai-Lun
    Chen, Wei-Sheng
    SCIENCE OF ADVANCED MATERIALS, 2017, 9 (12) : 2155 - 2160
  • [16] Roasting, Phase Transformation and Leaching of Valuable Metals in Spent Lithium-Ion Batteries
    Jie, Xiao-wu
    Wang, Cheng-yan
    Li, Dun-fang
    Yin, Fei
    Chen, Yong-qiang
    Yang, Yong-qiang
    SELECTED PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON WASTE MANAGEMENT AND TECHNOLOGY(ICWMT 5), 2010, : 304 - 308
  • [17] Separation and recovery of valuable metals from spent lithium ion batteries: Simultaneous recovery of Li and Co in a single step
    Chen, Xiangping
    Kang, Duozhi
    Cao, Ling
    Li, Jiazhu
    Zhou, Tao
    Ma, Hongrui
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 210 : 690 - 697
  • [18] Efficient extraction and separation of valuable elements from spent lithium-ion batteries by leaching and solvent extraction: A review
    Shuai, Jinping
    Liu, Weizao
    Rohani, Sohrab
    Wang, Zhenghao
    He, Minyu
    Ding, Chunlian
    Lv, Xuewei
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [19] Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries
    Yang, Yue
    Huang, Guoyong
    Xu, Shengming
    He, Yinghe
    Liu, Xin
    HYDROMETALLURGY, 2016, 165 : 390 - 396
  • [20] Recovery of valuable metals and modification of cathode materials from spent lithium-ion batteries
    Tang, Xin
    Tang, Wei
    Duan, Jidong
    Yang, Wenping
    Wang, Rui
    Tang, Manqin
    Li, Jing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 874