facile and efficient recovery method of valuable metals from spent lithium-ion batteries via simultaneous leaching and separation strategy

被引:0
|
作者
Li, Donghui [1 ]
Feng, Shuyao [1 ]
He, Chao [2 ]
Men, Lijuan [1 ]
Li, Jiangshuo [1 ]
Zhang, Jiafeng [3 ]
Zhou, Yefeng [1 ]
机构
[1] Xiangtan Univ, Chem Proc Simulat & Optimizat Engn Res Ctr, Natl & Local United Engn Res Ctr Chem Proc Simulat, Minist Educ, Xiangtan 411100, Peoples R China
[2] Tampere Univ, Fac Engn & Nat Sci, Korkeakoulunkatu 8, Tampere 33720, Finland
[3] Cent South Univ, Sch Met & Environm, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Spent lithium-ion batteries; Valuable metals; Hydrometallurgical recovery; Simultaneous leaching and separation; Facile and efficient recovery method;
D O I
10.1016/j.wasman.2025.01.036
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Traditional hydrometallurgical recycling methods present challenges including complex processes, significant metal loss, and high costs. To address these issues, this work introduces a facile and efficient recycling method for spent ternary cathode materials, which combines acid leaching and oxidation as well as ammonia leaching. Firstly, careful control of the phosphoric acid concentration and sodium persulfate dosage allows for the selective leaching of Li and Ni in the process of acid leaching and oxidation, and thus their leaching efficiencies can reach as high as 99.3 % and 97.2 % respectively. Meanwhile, Co and Mn can be separated in the form of Co3O4 and MnO2 remaining in the waste residues. Secondly, based on the stability difference of complexes formed by cobalt and manganese with ammonia, Co can be selectively leached from waste residue through ammonia leaching, with the leaching efficiency reaching 93.2 %, while Mn is separated via reacting with CO32- in the solution to form MnCO3. Moreover, the mechanisms of selectively leaching Li and Ni during acid leaching and oxidation processes are revealed using characterization techniques such as XRD, ICP, SEM-EDS, and thermodynamic analysis. Finally, economic analysis shows that the benefits of this approach in terms of battery reuse are considerable, and there are clear advantages in terms of process simplification and operational safety. Compared to traditional hydrometallurgical recovery methods, which typically involve sequential separation after metal leaching, the proposed method achieves simultaneous leaching and separation of metals, thereby simplifying the recovery process and reducing metal losses.
引用
收藏
页码:220 / 230
页数:11
相关论文
共 50 条
  • [1] Separation and Recovery of Valuable Metals from Ammonia Leaching Solution of Spent Lithium-Ion Batteries
    Yu, Jiancheng
    Ma, Baozhong
    Qiu, Zhijun
    Wang, Chengyan
    Chen, Yongqiang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (26) : 9738 - 9750
  • [2] Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching
    Zhang, Yingchao
    Wang, Wenqiang
    Fang, Qi
    Xu, Shengming
    WASTE MANAGEMENT, 2020, 102 : 847 - 855
  • [3] Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries
    Chen, Yongming
    Liu, Nannan
    Hu, Fang
    Ye, Longgang
    Xi, Yan
    Yang, Shenghai
    WASTE MANAGEMENT, 2018, 75 : 469 - 476
  • [4] Efficient recovery of valuable metals from spent Lithium-ion batteries by pyrite method with hydrometallurgy process
    Su, Fanyun
    Zhou, Xiangyang
    Liu, Xiaojian
    Yang, Juan
    Tang, Jingjing
    Yang, Wan
    Li, Zhenxiao
    Wang, Hui
    Ma, Yayun
    CHEMICAL ENGINEERING JOURNAL, 2023, 455
  • [5] Treatment of valuable metals from leaching solution of spent lithium-ion batteries
    Dalini, E. Asadi
    Karimi, Gh.
    Zandevakili, S.
    MINERALS ENGINEERING, 2021, 173
  • [6] Recovery of valuable metals from spent lithium-ion batteries via zinc powder reduction roasting and cysteine leaching
    Su, Fanyun
    Meng, Qi
    Liu, Xiaojian
    Yang, Wan
    Chen, Yanxi
    Yang, Juan
    Tang, Jingjing
    Wang, Hui
    Ma, Yayun
    Zhou, Xiangyang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 912
  • [7] Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process
    Li, Li
    Zhai, Longyu
    Zhang, Xiaoxiao
    Lu, Jun
    Chen, Renjie
    Wu, Feng
    Amine, Khalil
    JOURNAL OF POWER SOURCES, 2014, 262 : 380 - 385
  • [8] Separation and Efficient Recovery of Lithium from Spent Lithium-Ion Batteries
    Gerold, Eva
    Luidold, Stefan
    Antrekowitsch, Helmut
    METALS, 2021, 11 (07)
  • [9] Efficient separation and recovery of lithium and manganese from spent lithium-ion batteries powder leaching solution
    Shi, Pengfei
    Yang, Shenghai
    Wu, Guoqing
    Chen, Huayong
    Chang, Di
    Jie, Yafei
    Fang, Gang
    Mo, Caixuan
    Chen, Yongming
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 309
  • [10] Innovative Electrochemical Strategy to Recovery of Cathode and Efficient Lithium Leaching from Spent Lithium-Ion Batteries
    Liu, Kui
    Yang, Shenglong
    Lai, Feiyan
    Wang, Hongqiang
    Huang, Youguo
    Zheng, Fenghua
    Wang, Shubin
    Zhang, Xiaohui
    Li, Qingyu
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (05): : 4767 - 4776