Efficient high performance computing with the ALICE event processing nodes GPU-based farm

被引:0
|
作者
Ronchetti, Federico [1 ,2 ]
Akishina, Valentina [3 ,4 ]
Andreassen, Edvard [1 ]
Bluhme, Nora [3 ,4 ]
Dange, Gautam [3 ,4 ]
de Cuveland, Jan [3 ,4 ]
Erba, Giada [1 ]
Gaur, Hari [3 ,4 ]
Hutter, Dirk [3 ,4 ]
Kozlov, Grigory [3 ,4 ]
Krcal, Lubos [1 ]
La Pointe, Sarah [3 ,4 ]
Lehrbach, Johannes [3 ,4 ]
Lindenstruth, Volker [3 ,4 ,5 ]
Neskovic, Gvozden [3 ,4 ]
Redelbach, Andreas [3 ,4 ]
Rohr, David [1 ]
Weiglhofer, Felix [3 ,4 ]
Wilhelmi, Alexander [3 ,4 ]
机构
[1] European Org Nucl Res CERN, Geneva, Switzerland
[2] Ist Nazl Fis Nucl INFN, Lab Nazl Frascati, Frascati, Italy
[3] Frankfurt Inst Adv Studies, Frankfurt, Germany
[4] Goethe Univ Frankfurt, Frankfurt, Germany
[5] GSI Helmholtz Ctr, Darmstadt, Germany
来源
FRONTIERS IN PHYSICS | 2025年 / 13卷
关键词
scientific computing; sustainable computing; HTC; HPC; gpu; online data reconstruction and calibration; online data compression; synchronous data processing;
D O I
10.3389/fphy.2025.1541854
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Due to the increase of data volumes expected for the LHC Run 3 and Run 4, the ALICE Collaboration designed and deployed a new, energy efficient, computing model to run Online and Offline O 2 data processing within a single software framework. The ALICE O 2 Event Processing Nodes (EPN) project performs online data reconstruction using GPUs (Graphic Processing Units) instead of CPUs and applies an efficient, entropy-based, online data compression to cope with Pb-Pb collision data at a 50 kHz hadronic interaction rate. Also, the O 2 EPN farm infrastructure features an energy efficient, environmentally friendly, adiabatic cooling system which allows for operational and capital cost savings.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] The use of low-cost, efficient GPU-based parallel computing in lightning modelling
    Gulyas, Attila
    Kiss, Istvan
    ELECTRIC POWER SYSTEMS RESEARCH, 2014, 113 : 41 - 47
  • [22] High accuracy digital image correlation powered by GPU-based parallel computing
    Zhang, Lingqi
    Wang, Tianyi
    Jiang, Zhenyu
    Kemao, Qian
    Liu, Yiping
    Liu, Zejia
    Tang, Liqun
    Dong, Shoubin
    OPTICS AND LASERS IN ENGINEERING, 2015, 69 : 7 - 12
  • [23] GPU-Based Biclustering for Neural Information Processing
    Lo, Alan W. Y.
    Liu, Benben
    Cheung, Ray C. C.
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT V, 2012, 7667 : 134 - 141
  • [24] GPU-Based Parallel Processing Technology in DPI
    Zhong, Zhimin
    Zhang, Yuliang
    Yang, Guanglong
    Kong, Yongping
    WEB TECHNOLOGIES AND APPLICATIONS, APWEB 2015 WORKSHOPS, 2015, 9461 : 44 - 53
  • [25] GPU-based tolerance volumes for mesh processing
    Botsch, M
    Bommes, D
    Vogel, C
    Kobbelt, L
    12TH PACIFIC CONFERENCE ON COMPUTER GRAPHICS AND APPLICATIONS, PROCEEDINGS, 2004, : 237 - 243
  • [26] Performance of a GPU-Based Radar Processor
    Bolding, Mark
    Crumpton, Saul
    Ediger, David
    Samo, George
    2021 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2021,
  • [27] A survey of GPU-based medical image computing techniques
    Shi, Lin
    Liu, Wen
    Zhang, Heye
    Xie, Yongming
    Wang, Defeng
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2012, 2 (03) : 188 - 206
  • [28] Efficient GPU-based Optimization of Volume Meshes
    Shaffer, Eric
    Cheng, Zuofu
    Yeh, Raine
    Zagaris, George
    Olson, Luke
    PARALLEL COMPUTING: ACCELERATING COMPUTATIONAL SCIENCE AND ENGINEERING (CSE), 2014, 25 : 285 - 294
  • [29] Efficient Shadows for GPU-based Volume Raycasting
    Ropinski, Timo
    Kasten, Jens
    Hinrichs, Klaus
    WSCG 2008, FULL PAPERS, 2008, : 17 - 24
  • [30] GPU-based efficient computation of power diagram
    Zheng, Liping
    Gui, Zhiqiang
    Cai, Ruiwen
    Fei, Yue
    Zhang, Gaofeng
    Xu, Benzhu
    COMPUTERS & GRAPHICS-UK, 2019, 80 : 29 - 36