Quantum Multi-Agent Reinforcement Learning Software Design and Visual Simulations for Multi-Drone Mobility Control

被引:0
作者
Park, Soohyun [1 ]
Kim, Gyu Seon [2 ]
Jung, Sovi [3 ]
Kim, Joongheon [2 ]
机构
[1] Sookmyung Womens Univ, Div Comp Sci, Seoul, South Korea
[2] Korea Univ, Dept Elect & Comp Engn, Seoul, South Korea
[3] Ajou Univ, Dept Elect & Comp Engn, Suwon, South Korea
来源
2024 IEEE VTS ASIA PACIFIC WIRELESS COMMUNICATIONS SYMPOSIUM, APWCS 2024 | 2024年
基金
新加坡国家研究基金会;
关键词
Drone; Quantum Machine Learning; Reinforcement Learning; Simulations; Visualization;
D O I
10.1109/APWCS61586.2024.10679327
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Quantum machine learning (QML) has received a lot of attention according to its light training parameter numbers and speeds; and the advances of QML lead to active research on quantum multi-agent reinforcement learning (QMARL). Existing classical multi-agent reinforcement learning (MARL) features non-stationarity and uncertain properties. Therefore, this paper presents a simulation software framework for novel QMARL to control autonomous multi-drone mobility, i.e., quantum multi-drone reinforcement learning. Our proposed framework accomplishes reasonable reward convergence and service quality performance with fewer trainable parameters. Furthermore, it shows more stable training results. Lastly, our proposed software allows us to analyze the training process and results.
引用
收藏
页数:5
相关论文
共 50 条
[21]   MARLens: Understanding Multi-Agent Reinforcement Learning for Traffic Signal Control via Visual Analytics [J].
Zhang, Yutian ;
Zheng, Guohong ;
Liu, Zhiyuan ;
Li, Quan ;
Zeng, Haipeng .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2025, 31 (07) :4018-4033
[22]   Towards Multi-agent Reinforcement Learning using Quantum Boltzmann Machines [J].
Mueller, Tobias ;
Roch, Christoph ;
Schmid, Kyrill ;
Altmann, Philipp .
ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 1, 2022, :121-130
[23]   Quantum-Train-Based Distributed Multi-Agent Reinforcement Learning [J].
Chen, Kuan-Cheng ;
Chen, Samuel Yen-Chi ;
Liu, Chen-Yu ;
Leung, Kin K. .
2025 IEEE SYMPOSIUM FOR MULTIDISCIPLINARY COMPUTATIONAL INTELLIGENCE INCUBATORS, MCII COMPANION, 2025,
[24]   Hierarchical Multi-Agent Reinforcement Learning Framework for Cellular Mobility Load Management [J].
Eigharably, Aamen ;
Aboelwafa, Mariam ;
Banawan, Karim ;
Seddik, Karim G. .
2025 IEEE 22ND CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2025,
[25]   Multi-agent Reinforcement Learning for Service Composition [J].
Lei, Yu ;
Yu, Philip S. .
PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (SCC 2016), 2016, :790-793
[26]   Reinforcement learning of multi-agent communicative acts [J].
Hoet S. ;
Sabouret N. .
Revue d'Intelligence Artificielle, 2010, 24 (02) :159-188
[27]   TEAM POLICY LEARNING FOR MULTI-AGENT REINFORCEMENT LEARNING [J].
Cassano, Lucas ;
Alghunaim, Sulaiman A. ;
Sayed, Ali H. .
2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, :3062-3066
[28]   Aggregation Transfer Learning for Multi-Agent Reinforcement learning [J].
Xu, Dongsheng ;
Qiao, Peng ;
Dou, Yong .
2021 2ND INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2021), 2021, :547-551
[29]   Specification Aware Multi-Agent Reinforcement Learning [J].
Ritz, Fabian ;
Phan, Thomy ;
Mueller, Robert ;
Gabor, Thomas ;
Sedlmeier, Andreas ;
Zeller, Marc ;
Wieghardt, Jan ;
Schmid, Reiner ;
Sauer, Horst ;
Klein, Cornel ;
Linnhoff-Popien, Claudia .
AGENTS AND ARTIFICIAL INTELLIGENCE, ICAART 2021, 2022, 13251 :3-21
[30]   Multi-agent deep reinforcement learning: a survey [J].
Sven Gronauer ;
Klaus Diepold .
Artificial Intelligence Review, 2022, 55 :895-943