CTAB-assisted hydrothermal synthesis of C@LiMn0.8Fe0.2PO4 nanospherical cathode materials

被引:1
作者
Lu, Tongyu [1 ,2 ,3 ]
Wu, Zelin [1 ,2 ,3 ]
Wang, Haibo [1 ,2 ,3 ]
Wang, Chenbo [1 ,2 ]
Guo, Yuxuan [1 ,2 ,3 ]
Wen, Hui [1 ,2 ]
Zhao, Zhiyong [1 ,2 ]
Wang, Congwei [1 ,2 ]
Huang, Tao [4 ]
Wang, Junying [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Coal Chem, Shanxi Key Lab Carbon Mat, Taiyuan 030001, Peoples R China
[2] Chinese Acad Sci, Inst Coal Chem, CAS Key Lab Carbon Mat, Taiyuan 030001, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] Shanxi Fenxi Heavy Ind Co Ltd, FTEC, Taiyuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Cathode materials; Cetyltrimethylammonium bromide; Hydrothermal synthesis; Lithium-ion battery; Lithium manganese iron phosphate; LITHIUM; ROUTE;
D O I
10.1016/j.matlet.2025.138424
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lithium manganese iron phosphate (LMFP) is increasingly attracting attention in the industry due to its excellent performance advantages. However, its limited electrical conductivity and lithium-ion diffusivity still hinder its practical application. In this paper, we introduced a method for the synthesis of LiMn0.8Fe0.2PO4/C nano spherical composites by using cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method. The material doped with 1 mmol of CTAB(LMFP/C-1) significantly prevented particle agglomeration and reduced the particle size, which improved the electrical conductivity of the material and exhibited excellent multiplicative and cycling properties. The results showed that LMFP-1can release the initial specific capacity around 152.4 mAh center dot g- 1 at 0.1C, and the capacity retention rate was 94.35 % after 500 cycles at 1C. This research provides a method to improve the cathode materials for lithium-ion batteries.
引用
收藏
页数:5
相关论文
共 18 条
[1]  
Baichao Z., 2022, Mater. Today Energy, V30
[2]   Morphology Regulation of Nano LiMn0.9Fe0.1PO4 by Solvothermal Synthesis for lithium ion batteries (vol 112, pg 144, 2013) [J].
Dai, Zhongjia ;
Wang, Li ;
He, Xiangming ;
Ye, Feipeng ;
Huang, Chaochao ;
Li, Jianjun ;
Gao, Jian ;
Wang, Jianlong ;
Tian, Guangyu ;
Ouyang, Minggao .
ELECTROCHIMICA ACTA, 2014, 115 :671-671
[3]   Holey reduced graphene oxide/carbon nanotube/LiMn0.7Fe0.3PO4 composite cathode for high-performance lithium batteries [J].
Ding, Dong ;
Maeyoshi, Yuta ;
Kubota, Masaaki ;
Wakasugi, Jungo ;
Kanamura, Kiyoshi ;
Abe, Hidetoshi .
JOURNAL OF POWER SOURCES, 2020, 449
[4]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[5]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[6]   Resonant photoemission spectroscopy of the cathode material LixMn0.5Fe0.5PO4 for lithium-ion battery [J].
Kurosumi, Shodai ;
Horiba, Koji ;
Nagamura, Naoka ;
Toyoda, Satoshi ;
Kumigashira, Hiroshi ;
Oshima, Masaharu ;
Furutsuki, Sho ;
Nishimura, Shin-ichi ;
Yamada, Atsuo ;
Mizuno, Noritaka .
JOURNAL OF POWER SOURCES, 2013, 226 :42-46
[7]   Chemical reaction characteristics, structural transformation and electrochemical performances of new cathode LiVPO4F/C synthesized by a novel one-step method for lithium ion batteries [J].
Li, Qiyuan ;
Wen, Zheng ;
Fan, Changling ;
Zeng, Taotao ;
Han, Shaochang .
RSC ADVANCES, 2018, 8 (13) :7044-7054
[8]   Structure, performance, morphology and component transformation mechanism of LiMn0.8Fe0.2PO4/C nanocrystal with excellent stability [J].
Luo, Ting ;
Zeng, Tao-tao ;
Chen, Shi-lin ;
Li, Rong ;
Fan, Run-zhen ;
Chen, Han ;
Han, Shao-chang ;
Fan, Chang-ling .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 834
[9]   Evolution of ZnS Nanoparticles via Facile CTAB Aqueous Micellar Solution Route: A Study on Controlling Parameters [J].
Mehta, S. K. ;
Kumar, Sanjay ;
Chaudhary, Savita ;
Bhasin, K. K. ;
Gradzielski, Michael .
NANOSCALE RESEARCH LETTERS, 2009, 4 (01) :17-28
[10]  
Ou J.K., 2021, Relat. Mat., V120, P11