Roles of Al-vacancy complexes on the luminescence spectra of low dislocation density Si-doped AlN grown by halide vapor phase epitaxy

被引:0
作者
Chichibu, S. F. [1 ]
Kikuchi, K. [1 ]
Moody, B. [2 ]
Mita, S. [2 ]
Collazo, R. [3 ]
Sitar, Z. [3 ]
Kumagai, Y. [4 ]
Ishibashi, S. [5 ]
Uedono, A. [6 ]
Shima, K. [1 ]
机构
[1] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan
[2] Adroit Mat Inc, 2054 Kildaire Farm Rd,Suite 205, Cary, NC 27518 USA
[3] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA
[4] Tokyo Univ Agr & Technol, Dept Appl Chem, Koganei, Tokyo 1848588, Japan
[5] Natl Inst Adv Ind Sci & Technol, Res Ctr Computat Design Adv Funct Mat, Tsukuba, Ibaraki 3058568, Japan
[6] Univ Tsukuba, Fac Pure & Appl Sci, Div Appl Phys, Tsukuba, Ibaraki 3058573, Japan
关键词
LIGHT-EMITTING-DIODES; POINT-DEFECTS; GAN; PHOTOLUMINESCENCE; SEMICONDUCTORS; IDENTIFICATION; PERFORMANCE; WAVELENGTH; CRYSTALS; LAYERS;
D O I
10.1063/5.0252149
中图分类号
O59 [应用物理学];
学科分类号
摘要
Roles of Al-vacancy (V-AI) complexes on the cathodoluminescence (CL) spectra of Si-doped AlN grown by halide vapor phase epitaxy (HVPE) on a physical-vapor-transported (0001) AlN substrate are described, making a connection with the results of positron annihilation measurements. A combination of HVPE and AlN substrate enabled decreasing deleterious carbon concentration and dislocation density, respectively, thus accentuating the influences ofVAI -complexes on the luminescence processes. A low-temperature CL spectrum of unintentionally doped AlN exhibited predominant excitonic emissions at around 6 eV and a marginal deep-state emission band at around 3.7 eV that originates from residual carbon (<10(16) cm(-3)) on nitrogen sites (CN ). However, the sample was revealed to contain a considerable amount (similar to 10(17) cm(- 3)) of vacancy clusters, most likely comprising a V(AI )and nitrogen-vacancies (V-N), namely,V-AI(V-N)1 (- 2) , which act as nonradiative recombination centers that decrease overall CL intensity at elevated temperatures. With increasing Si-doping concentration ([Si]), major vacancy species progressively changed from VAI(V-N)(1 - 2) to V-AI(ON) (1 - 2) , where (ON) is oxygen on N sites, which exhibit other deep-state emission bands ranging from 3.2 to 3.5 eV. Further increase in [Si] gave rise to the formation of donor-compensating defects comprising V(AI )and Si on the second-nearest-neighbor Al sites ( Si Al ), abbreviated by V-AI- Si Al n , which exhibit emission shoulders at around 2.9-3.0 eV. When [Si] exceeded 5 x 10(18) cm(-3), an emission band at around 4.5 eV emerged, which had been ascribed to originate from the nearest-neighbor SiAlCN complexes. Because V-AI-complexes, including those containing impurities, are thermally stable, incorporation of vacancies should be blocked at the growth stage.
引用
收藏
页数:7
相关论文
共 94 条
[1]   Sub-milliwatt power III-N light emitting diodes at 285 nm [J].
Adivarahan, V ;
Zhang, JP ;
Chitnis, A ;
Shuai, W ;
Sun, J ;
Pachipulusu, R ;
Shatalov, M ;
Khan, MA .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2002, 41 (4B) :L435-L436
[2]   The 2020 UV emitter roadmap [J].
Amano, Hiroshi ;
Collazo, Ramon ;
Santi, Carlo De ;
Einfeldt, Sven ;
Funato, Mitsuru ;
Glaab, Johannes ;
Hagedorn, Sylvia ;
Hirano, Akira ;
Hirayama, Hideki ;
Ishii, Ryota ;
Kashima, Yukio ;
Kawakami, Yoichi ;
Kirste, Ronny ;
Kneissl, Michael ;
Martin, Robert ;
Mehnke, Frank ;
Meneghini, Matteo ;
Ougazzaden, Abdallah ;
Parbrook, Peter J. ;
Rajan, Siddharth ;
Reddy, Pramod ;
Roemer, Friedhard ;
Ruschel, Jan ;
Sarkar, Biplab ;
Scholz, Ferdinand ;
Schowalter, Leo J. ;
Shields, Philip ;
Sitar, Zlatko ;
Sulmoni, Luca ;
Wang, Tao ;
Wernicke, Tim ;
Weyers, Markus ;
Witzigmann, Bernd ;
Wu, Yuh-Renn ;
Wunderer, Thomas ;
Zhang, Yuewei .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (50)
[3]   An AlN/Al0.85Ga0.15N high electron mobility transistor [J].
Baca, Albert G. ;
Armstrong, Andrew M. ;
Allerman, Andrew A. ;
Douglas, Erica A. ;
Sanchez, Carlos A. ;
King, Michael P. ;
Coltrin, Michael E. ;
Fortune, Torben R. ;
Kaplar, Robert J. .
APPLIED PHYSICS LETTERS, 2016, 109 (03)
[4]   AlGaN channel field effect transistors with graded heterostructure ohmic contacts [J].
Bajaj, Sanyam ;
Akyol, Fatih ;
Krishnamoorthy, Sriram ;
Zhang, Yuewei ;
Rajan, Siddharth .
APPLIED PHYSICS LETTERS, 2016, 109 (13)
[5]   Internal Quantum Efficiency of Whole-Composition-Range AlGaN Multiquantum Wells [J].
Ban, Kazuhito ;
Yamamoto, Jun-ichi ;
Takeda, Kenichiro ;
Ide, Kimiyasu ;
Iwaya, Motoaki ;
Takeuchi, Tetsuya ;
Kamiyama, Satoshi ;
Akasaki, Isamu ;
Amano, Hiroshi .
APPLIED PHYSICS EXPRESS, 2011, 4 (05)
[6]   Growth of AlN bulk crystals on SiC seeds: Chemical analysis and crystal properties [J].
Bickermann, Matthias ;
Filip, Octavian ;
Epelbaum, Boris M. ;
Heimann, Paul ;
Feneberg, Martin ;
Neuschl, Benjamin ;
Thonke, Klaus ;
Wedler, Elke ;
Winnacker, Albrecht .
JOURNAL OF CRYSTAL GROWTH, 2012, 339 (01) :13-21
[7]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[8]   Large-area AlN substrates for electronic applications: An industrial perspective [J].
Bondokov, Robert T. ;
Mueller, Stephan G. ;
Morgan, Kenneth E. ;
Slack, Glen A. ;
Schujman, Sandra ;
Wood, Mark C. ;
Smart, Joseph A. ;
Schowalter, Leo J. .
JOURNAL OF CRYSTAL GROWTH, 2008, 310 (17) :4020-4026
[9]   Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD [J].
Bryan, Isaac ;
Bryan, Zachary ;
Washiyama, Shun ;
Reddy, Pramod ;
Gaddy, Benjamin ;
Sarkar, Biplab ;
Breckenridge, M. Hayden ;
Guo, Qiang ;
Bobea, Milena ;
Tweedie, James ;
Mita, Seiji ;
Irving, Douglas ;
Collazo, Ramon ;
Sitar, Zlatko .
APPLIED PHYSICS LETTERS, 2018, 112 (06)
[10]   In-plane optical polarization and dynamic properties of the near-band-edge emission of an m-plane freestanding AlN substrate and a homoepitaxial film [J].
Chichibu, S. F. ;
Kojima, K. ;
Hazu, K. ;
Ishikawa, Y. ;
Furusawa, K. ;
Mita, S. ;
Collazo, R. ;
Sitar, Z. ;
Uedono, A. .
APPLIED PHYSICS LETTERS, 2019, 115 (15)