共 108 条
[1]
Brodhagen M., Goldberger J.R., Hayes D.G., Inglis D.A., Marsh T.L., Miles C., Policy Considerations for Limiting Unintended Residual Plastic in Agricultural Soils, Environ. Sci. Policy, 69, pp. 81-84, (2017)
[2]
Steinmetz Z., Wollmann C., Schaefer M., Buchmann C., David J., Troger J., Munoz K., Fror O., Schaumann G.E., Plastic Mulching in Agriculture. Trading Short-Term Agronomic Benefits for Long-Term Soil Degradation?, Sci. Total Environ, 550, pp. 690-705, (2016)
[3]
Rydz J., Musiol M., Zawidlak-Wegrzynska B., Sikorska W., Chapter 14—Present and Future of Biodegradable Polymers for Food Packaging Applications, Handbook of Food Bioengineering, pp. 431-467, (2018)
[4]
Cucina M., De Nisi P., Trombino L., Tambone F., Adani F., Degradation of Bioplastics in Organic Waste by Mesophilic Anaerobic Digestion, Composting and Soil Incubation, Waste Manag, 134, pp. 67-77, (2021)
[5]
Rudin A., Choi P., Chapter 13—Biopolymers, The Elements of Polymer Science & Engineering, pp. 521-535, (2013)
[6]
Babu R.P., O'Connor K., Seeram R., Current Progress on Bio-Based Polymers and Their Future Trends, Prog. Biomater, 2, (2013)
[7]
Henton D., Gruber P., Lunt J., Randall J., Polylactic Acid Technology, Natural Fibers, Biopolymers, and Biocomposites, (2005)
[8]
Yusoff N.H., Pal K., Narayanan T., de Souza F.G., Recent Trends on Bioplastics Synthesis and Characterizations: Polylactic Acid (PLA) Incorporated with Tapioca Starch for Packaging Applications, J. Mol. Struct, 1232, (2021)
[9]
Ulger-Vatansever B., Onay T.T., Demirel B., Evaluation of Bioplastics Biodegradation Under Simulated Landfill Conditions, Environ. Sci. Pollut. Res. Int, 31, pp. 17779-17787, (2024)
[10]
Kirchkeszner C., Petrovics N., Tabi T., Magyar N., Kovacs J., Szabo B.S., Nyiri Z., Eke Z., Swelling as a Promoter of Migration of Plastic Additives in the Interaction of Fatty Food Simulants with Polylactic Acid- and Polypropylene-Based Plastics, Food Control, 132, (2022)