IMPC-based screening revealed that ROBO1 can regulate osteoporosis by inhibiting osteogenic differentiation

被引:0
作者
Zhang, Xiangzheng [1 ]
Wang, Yike [2 ]
Zheng, Miao [1 ]
Wei, Qi [1 ]
Zhang, Ruizhi [2 ]
Zhu, Keyu [2 ]
Zhai, Qiaocheng [3 ]
Xu, Youjia [1 ,2 ]
机构
[1] Soochow Univ, Affiliated Hosp 2, Osteoporosis Clin Ctr, Suzhou, Peoples R China
[2] Soochow Univ, Affiliated Hosp 2, Dept Orthopaed, Suzhou, Jiangsu, Peoples R China
[3] Wenzhou Med Univ, Quzhou Affiliated Hosp, Quzhou Peoples Hosp, Div Spine Surg, Quzhou, Peoples R China
来源
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY | 2024年 / 12卷
基金
国家重点研发计划;
关键词
osteoporosis; IMPC; ROBO1; osteogenesis; inflammation; POSTMENOPAUSAL OSTEOPOROSIS; OSTEOCYTES; PATHWAY; CELLS;
D O I
10.3389/fcell.2024.1450215
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Introduction: The utilization of denosumab in treating osteoporosis highlights promising prospects for osteoporosis intervention guided by gene targets. While omics-based research into osteoporosis pathogenesis yields a plethora of potential gene targets for clinical transformation, identifying effective gene targets has posed challenges. Methods: We first queried the omics data of osteoporosis clinical samples on PubMed, used International Mouse Phenotyping Consortium (IMPC) to screen differentially expressed genes, and conducted preliminary functional verification of candidate genes in human Saos2 cells through osteogenic differentiation and mineralization experiments. We then selected the candidate genes with the most significant effects on osteogenic differentiation and further verified the osteogenic differentiation and mineralization functions in mouse 3T3-E1 and bone marrow mesenchymal stem cells (BMSC). Finally, we used RNA-seq to explore the regulation of osteogenesis by the target gene. Results: We identified PPP2R2A, RRBP1, HSPB6, SLC22A15, ADAMTS4, ATP8B1, CTNNB1, ROBO1, and EFR3B, which may contribute to osteoporosis. ROBO1 was the most significant regulator of osteogenesis in both human and mouse osteoblast. The inhibitory effect of Robo1 knockdown on osteogenic differentiation may be related to the activation of inflammatory signaling pathways. Conclusion: Our study provides several novel molecular mechanisms involved in the pathogenesis of osteoporosis. ROBO1 is a potential target for osteoporosis intervention.
引用
收藏
页数:12
相关论文
共 43 条
[1]   Safety of denosumab in patients with chronic kidney disease [J].
Al Adhoubi, Nasra K. ;
Al Salmi, Issa .
SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION, 2021, 32 (05) :1220-1242
[2]   SLIT2/ROBO1-signaling inhibits macropinocytosis by opposing cortical cytoskeletal remodeling [J].
Bhosle, Vikrant K. ;
Mukherjee, Tapas ;
Huang, Yi-Wei ;
Patel, Sajedabanu ;
Pang, Bo Wen ;
Liu, Guang-Ying ;
Glogauer, Michael ;
Wu, Jane Y. ;
Philpott, Dana J. ;
Grinstein, Sergio ;
Robinson, Lisa A. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[3]   10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension [J].
Bone, Henry G. ;
Wagman, Rachel B. ;
Brandi, Maria L. ;
Brown, Jacques P. ;
Chapurlat, Roland ;
Cummings, Steven R. ;
Czerwinski, Edward ;
Fahrleitner-Pammer, Astrid ;
Kendler, David L. ;
Lippuner, Kurt ;
Reginster, Jean-Yves ;
Roux, Christian ;
Malouf, Jorge ;
Bradley, Michelle N. ;
Daizadeh, Nadia S. ;
Wang, Andrea ;
Dakin, Paula ;
Pannacciulli, Nicola ;
Dempster, David W. ;
Papapoulos, Socrates .
LANCET DIABETES & ENDOCRINOLOGY, 2017, 5 (07) :513-523
[4]   Osteocytes, mechanosensing and Wnt signaling [J].
Bonewald, Lynda F. ;
Johnson, Mark L. .
BONE, 2008, 42 (04) :606-615
[5]   Accelerating functional gene discovery in osteoarthritis [J].
Butterfield, Natalie C. ;
Curry, Katherine F. ;
Steinberg, Julia ;
Dewhurst, Hannah ;
Komla-Ebri, Davide ;
Mannan, Naila S. ;
Adoum, Anne-Tounsia ;
Leitch, Victoria D. ;
Logan, John G. ;
Waung, Julian A. ;
Ghirardello, Elena ;
Southam, Lorraine ;
Youlten, Scott E. ;
Wilkinson, J. Mark ;
McAninch, Elizabeth A. ;
Vancollie, Valerie E. ;
Kussy, Fiona ;
White, Jacqueline K. ;
Lelliott, Christopher J. ;
Adams, David J. ;
Jacques, Richard ;
Bianco, Antonio C. ;
Boyde, Alan ;
Zeggini, Eleftheria ;
Croucher, Peter I. ;
Williams, Graham R. ;
Bassett, J. H. Duncan .
NATURE COMMUNICATIONS, 2021, 12 (01)
[6]   Bone-Forming and Antiresorptive Effects of Romosozumab in Postmenopausal Women With Osteoporosis: Bone Histomorphometry and Microcomputed Tomography Analysis After 2 and 12 Months of Treatment [J].
Chavassieux, Pascale ;
Chapurlat, Roland ;
Portero-Muzy, Nathalie ;
Roux, Jean-Paul ;
Garcia, Pedro ;
Brown, Jacques P. ;
Libanati, Cesar ;
Boyce, Rogely W. ;
Wang, Andrea ;
Grauer, Andreas .
JOURNAL OF BONE AND MINERAL RESEARCH, 2019, 34 (09) :1597-1608
[7]   Transcriptional profiling of human femoral mesenchymal stem cells in osteoporosis and its association with adipogenesis [J].
Choi, Yong Jun ;
Song, Insun ;
Jin, Yilan ;
Jin, Hyun-Seok ;
Ji, Hyung Min ;
Jeong, Seon-Yong ;
Won, Ye-Yeon ;
Chung, Yoon-Sok .
GENE, 2017, 632 :7-15
[8]   Postnatal Skeletal Deletion of Dickkopf-1 Increases Bone Formation and Bone Volume in Male and Female Mice, Despite Increased Sclerostin Expression [J].
Colditz, Juliane ;
Thiele, Sylvia ;
Baschant, Ulrike ;
Niehrs, Christof ;
Bonewald, Lynda F. ;
Hofbauer, Lorenz C. ;
Rauner, Martina .
JOURNAL OF BONE AND MINERAL RESEARCH, 2018, 33 (09) :1698-1707
[9]   Romosozumab Treatment in Postmenopausal Women with Osteoporosis [J].
Cosman, F. ;
Crittenden, D. B. ;
Adachi, J. D. ;
Binkley, N. ;
Czerwinski, E. ;
Ferrari, S. ;
Hofbauer, L. C. ;
Lau, E. ;
Lewiecki, E. M. ;
Miyauchi, A. ;
Zerbini, C. A. F. ;
Milmont, C. E. ;
Chen, L. ;
Maddox, J. ;
Meisner, P. D. ;
Libanati, C. ;
Grauer, A. .
NEW ENGLAND JOURNAL OF MEDICINE, 2016, 375 (16) :1532-1543
[10]   Denosumab in chronic kidney disease: a narrative review of treatment efficacy and safety [J].
Gopaul, Aquila ;
Kanagalingam, Tharsan ;
Thain, Jenny ;
Khan, Tayyab ;
Cowan, Andrea ;
Sultan, Nabil ;
Clemens, Kristin K. .
ARCHIVES OF OSTEOPOROSIS, 2021, 16 (01)