The overexpression of the Aldehyde Dehydrogenases 1A subfamily (ALDH1As) in various diseases, particularly in cancer, has made it an important target for therapeutic applications. Interestingly, the 1A1 isoenzyme plays a role in tumor initiation and progression, being identified as a biomarker for cancer stem cells. However, although promising, current ALDH1A1 inhibitors suffer from a lack of isoform selectivity and off-target toxicity. This study aims to address these limitations by developing a new class of ALDH1A1-selective inhibitors. By leveraging structural analogies with Isatin-based ALDH1A1 inhibitors, we designed compounds containing a dihydrobenzo[4,5]imidazo[2,1-c][1,2,4]triazine-3,4-dione (BITD) core, that emerged from a repositioning approach. Using a microwave-assisted protocol, a small library of derivatives was synthesized, and enzymatic assays highlighted a promising isoform specificity for ALDH1A1 among ALDH1As, with the best-in-class compound 5, showing an inhibition of the enzyme activity of 86% for ALDH1A1 and no inhibition for 1A2 and 1A3 isoenzymes. In silico studies further elucidated the binding mode of 5, providing a rational basis for the observed selectivity. These findings represent a promising strategy for the development of more selective ALDH1A1 inhibitors, laying the foundation for further optimization processes. Graphical AbstractThe benzoimidazotriazinedione core was repositioned through a structural similarity-based retrieval, generating a new series of selective ALDH1A1 inhibitors.