Enhancing dark excitons in monolayer WSe2 via strain-induced hybridization with defect states

被引:1
作者
Zhang, Siyu [1 ,2 ,3 ]
Xie, Xing [3 ,4 ]
Chen, Junying [3 ,4 ]
Ding, Junnan [3 ,4 ]
Liu, Zongwen [5 ,6 ]
Wang, Jian-Tao [7 ,8 ,9 ]
He, Jun [3 ,4 ]
Zhang, Xingwang [1 ,2 ]
Liu, Yanping [3 ,4 ]
机构
[1] Chinese Acad Sci, Key Lab Semicond Mat Sci, Inst Semicond, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Cent South Univ, Inst Quantum Phys, Sch Phys, Changsha 410083, Peoples R China
[4] Cent South Univ, State Key Lab Precis Mfg Extreme Serv Performance, Changsha 410083, Peoples R China
[5] Xinjiang Univ, Sch Phys & Technol, State Key Lab Chem & Utilizat Carbon Based Energy, Urumqi 830046, Peoples R China
[6] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
[7] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[8] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[9] Songshan Lake Mat Lab, Dongguan 523808, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
transition metal dichalcogenide (TMDC); dark exciton; defect exciton; strain engineering; exciton hybridization; SEMICONDUCTORS; TRANSITION;
D O I
10.26599/NR.2025.94907035
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dark excitons in group VI transition metal dichalcogenides (TMDCs) have garnered significant interest due to their extended charge lifetime, spin lifetime, and diffusion length compared to bright excitons, presenting exciting opportunities for quantum communication and optoelectronic devices. However, their optical insensitivity poses challenges for investigation and manipulation. Here, we employ a strain engineering approach to introduce localized strain in monolayer WSe2 using a substrate with prepatterned holes, resulting in the hybridization of dark excitons with bright defect states. This hybridization significantly enhances photoluminescence (PL) intensity and reduces the linewidths of dark excitons by orders of magnitude. Additionally, the hybridized states exhibit unique features in temperature-dependent and linearly polarized PL spectra, with stable localization across a broad excitation power range (up to 0.4 mW) and tunable circular polarization under a magnetic field (87% at -9 T). These findings underscore strain engineering as an effective method for enhancing dark excitons and provide new insights into exciton physics in TMDCs, paving the way for advanced optoelectronic technologies.
引用
收藏
页数:8
相关论文
共 43 条
[1]   Magnetic control of valley pseudospin in monolayer WSe2 [J].
Aivazian, G. ;
Gong, Zhirui ;
Jones, Aaron M. ;
Chu, Rui-Lin ;
Yan, J. ;
Mandrus, D. G. ;
Zhang, Chuanwei ;
Cobden, David ;
Yao, Wang ;
Xu, X. .
NATURE PHYSICS, 2015, 11 (02) :148-152
[2]   Strain tuning of excitons in monolayer WSe2 [J].
Aslan, Ozgur Burak ;
Deng, Minda ;
Heinz, Tony F. .
PHYSICAL REVIEW B, 2018, 98 (11)
[3]   Valley-polarized local excitons in WSe2/WS2 vertical heterostructures [J].
Cao, Lingkai ;
Zhong, Jiahong ;
Yu, Juan ;
Zeng, Cheng ;
Ding, Junnan ;
Cong, Chunxiao ;
Yue, Xiaofei ;
Liu, Zongwen ;
Liu, Yanping .
OPTICS EXPRESS, 2020, 28 (15) :22135-22143
[4]  
Chakraborty C, 2015, NAT NANOTECHNOL, V10, P507, DOI [10.1038/nnano.2015.79, 10.1038/NNANO.2015.79]
[5]   Asymmetric magnetic proximity interactions in MoSe2/CrBr3 van der Waals heterostructures [J].
Choi, Junho ;
Lane, Christopher ;
Zhu, Jian-Xin ;
Crooker, Scott A. A. .
NATURE MATERIALS, 2023, 22 (03) :305-+
[6]   Dark exciton-exciton annihilation in monolayer WSe2 [J].
Erkensten, Daniel ;
Brem, Samuel ;
Wagner, Koloman ;
Gillen, Roland ;
Perea-Causin, Rauel ;
Ziegler, Jonas D. ;
Taniguchi, Takashi ;
Watanabe, Kenji ;
Maultzsch, Janina ;
Chernikov, Alexey ;
Malic, Ermin .
PHYSICAL REVIEW B, 2021, 104 (24)
[7]   Probing dark exciton navigation through a local strain landscape in a WSe2 monolayer [J].
Gelly, Ryan J. ;
Renaud, Dylan ;
Liao, Xing ;
Pingault, Benjamin ;
Bogdanovic, Stefan ;
Scuri, Giovanni ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Urbaszek, Bernhard ;
Park, Hongkun ;
Loncar, Marko .
NATURE COMMUNICATIONS, 2022, 13 (01)
[8]   Intrinsic and Extrinsic Defect-Related Excitons in TMDCs [J].
Greben, Kyrylo ;
Arora, Sonakshi ;
Harats, Moshe G. ;
Bolotin, Kirill, I .
NANO LETTERS, 2020, 20 (04) :2544-2550
[9]   Unveiling optical anisotropy in disrupted symmetry WSe2/SiP heterostructures [J].
Hu, Biqi ;
Xie, Xing ;
Ouyang, Xinyu ;
Chen, Junying ;
Li, Shaofei ;
He, Jun ;
Liu, Zongwen ;
Wang, Jian-Tao ;
Liu, Yanping .
NANO RESEARCH, 2024, 17 (09) :8585-8591
[10]   Probing the origin of excitonic states in monolayer WSe2 [J].
Huang, Jiani ;
Hoang, Thang B. ;
Mikkelsen, Maiken H. .
SCIENTIFIC REPORTS, 2016, 6