Visual Analysis of Leaky Integrate-and-Fire Spiking Neuron Models and Circuits

被引:0
|
作者
Sedighi, Sara [1 ]
Afrin, Farhana [1 ]
Onyejegbu, Elonna [1 ]
Cantley, Kurtis D. [1 ]
机构
[1] Boise State Univ, Dept Elect & Comp Engn, Boise, ID 83725 USA
来源
2024 IEEE 67TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, MWSCAS 2024 | 2024年
基金
美国国家科学基金会;
关键词
Spiking neural network; Threshold dynamics; decay rate; LIF neuron;
D O I
10.1109/MWSCAS60917.2024.10658798
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Emulating biologically plausible online learning in spiking neural networks (SNNs) will enable the next generation of energy-efficient neuromorphic architectures. While software leads the way in terms of exploring various Machine Learning (ML) algorithms and applications, bridging the gap between hardware (devices and circuits) and software is crucial to accurately predict network properties, especially at large scale. This work compares behavior of a spiking neuron circuit simulated with Cadence Spectre to a Python model implemented with a custom spiking neuron model. The results demonstrate that the two exhibit the same spiking characteristics over a range of parameter values, confirming that the more versatile Python model indeed has a hardware equivalent.
引用
收藏
页码:1437 / 1440
页数:4
相关论文
共 28 条
  • [21] Sharing leaky-integrate-and-fire neurons for memory-efficient spiking neural networks
    Kim, Youngeun
    Li, Yuhang
    Moitra, Abhishek
    Yin, Ruokai
    Panda, Priyadarshini
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [22] L-Shaped Double Gate Bipolar Impact Ionization MOSFET Based Energy Efficient Leaky Integrate and Fire Neuron for Spiking Neural Network
    Sarkhel, Saheli
    Kumari, Tripty
    Saha, Priyanka
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2023, 22 : 673 - 678
  • [23] Resting-potential-adjustable soft-reset integrate-and-fire neuron model for highly reliable and energy-efficient hardware-based spiking neural networks
    Park, Kyungchul
    Kim, Sungjoon
    Oh, Min-Hye
    Choi, Woo Young
    NEUROCOMPUTING, 2024, 590
  • [24] Hardware-Efficient Emulation of Leaky Integrate-and-Fire Model Using Template-Scaling-Based Exponential Function Approximation
    Kim, Jeeson
    Kornijcuk, Vladmir
    Ye, Changmin
    Jeong, Doo Seok
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2021, 68 (01) : 350 - 362
  • [25] Organic electronics Axon-Hillock neuromorphic circuit: towards biologically compatible, and physically flexible, integrate-and-fire spiking neural networks
    Hosseini, Mohammad Javad Mirshojaeian
    Donati, Elisa
    Yokota, Tomoyuki
    Lee, Sunghoon
    Indiveri, Giacomo
    Someya, Takao
    Nawrocki, Robert A.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (10)
  • [26] Biologically plausible information propagation in a complementary metal-oxide semiconductor integrate-and-fire artificial neuron circuit with memristive synapses
    Benatti, Lorenzo
    Zanotti, Tommaso
    Gandolfi, Daniela
    Mapelli, Jonathan
    Puglisi, Francesco Maria
    NANO FUTURES, 2023, 7 (02)
  • [27] Leaky-integrate-fire neuron based on vertically extended drain Si 1-x Gex source TFET: and
    Priyanka
    Singh, Sangeeta
    Panchore, Meena
    MICROELECTRONICS JOURNAL, 2024, 148
  • [28] High-accuracy deep ANN-to-SNN conversion using quantization-aware training framework and calcium-gated bipolar leaky integrate and fire neuron
    Gao, Haoran
    He, Junxian
    Wang, Haibing
    Wang, Tengxiao
    Zhong, Zhengqing
    Yu, Jianyi
    Wang, Ying
    Tian, Min
    Shi, Cong
    FRONTIERS IN NEUROSCIENCE, 2023, 17