Visual Analysis of Leaky Integrate-and-Fire Spiking Neuron Models and Circuits

被引:0
|
作者
Sedighi, Sara [1 ]
Afrin, Farhana [1 ]
Onyejegbu, Elonna [1 ]
Cantley, Kurtis D. [1 ]
机构
[1] Boise State Univ, Dept Elect & Comp Engn, Boise, ID 83725 USA
来源
2024 IEEE 67TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, MWSCAS 2024 | 2024年
基金
美国国家科学基金会;
关键词
Spiking neural network; Threshold dynamics; decay rate; LIF neuron;
D O I
10.1109/MWSCAS60917.2024.10658798
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Emulating biologically plausible online learning in spiking neural networks (SNNs) will enable the next generation of energy-efficient neuromorphic architectures. While software leads the way in terms of exploring various Machine Learning (ML) algorithms and applications, bridging the gap between hardware (devices and circuits) and software is crucial to accurately predict network properties, especially at large scale. This work compares behavior of a spiking neuron circuit simulated with Cadence Spectre to a Python model implemented with a custom spiking neuron model. The results demonstrate that the two exhibit the same spiking characteristics over a range of parameter values, confirming that the more versatile Python model indeed has a hardware equivalent.
引用
收藏
页码:1437 / 1440
页数:4
相关论文
共 28 条
  • [1] Leaky Integrate-and-Fire Biristor Neuron
    Han, Jin-Woo
    Meyyappan, M.
    IEEE ELECTRON DEVICE LETTERS, 2018, 39 (09) : 1457 - 1460
  • [2] Improved integrate-and-fire neuron models for inference acceleration of spiking neural networks
    Zhou, Yongcheng
    Zhang, Anguo
    APPLIED INTELLIGENCE, 2021, 51 (04) : 2393 - 2405
  • [3] Improved integrate-and-fire neuron models for inference acceleration of spiking neural networks
    Yongcheng Zhou
    Anguo Zhang
    Applied Intelligence, 2021, 51 : 2393 - 2405
  • [4] PCMO RRAM for Integrate-and-Fire Neuron in Spiking Neural Networks
    Lashkare, S.
    Chouhan, S.
    Chavan, T.
    Bhat, A.
    Kumbhare, P.
    Ganguly, U.
    IEEE ELECTRON DEVICE LETTERS, 2018, 39 (04) : 484 - 487
  • [5] Output Stream of Leaky Integrate-and-Fire Neuron Without Diffusion Approximation
    Alexander K. Vidybida
    Journal of Statistical Physics, 2017, 166 : 267 - 281
  • [6] Output Stream of Leaky Integrate-and-Fire Neuron Without Diffusion Approximation
    Vidybida, Alexander K.
    JOURNAL OF STATISTICAL PHYSICS, 2017, 166 (02) : 267 - 281
  • [7] Leaky Integrate-and-Fire Neuron Circuit Based on Floating-Gate Integrator
    Kornijcuk, Vladimir
    Lim, Hyungkwang
    Seok, Jun Yeong
    Kim, Guhyun
    Kim, Seong Keun
    Kim, Inho
    Choi, Byung Joon
    Jeong, Doo Seok
    FRONTIERS IN NEUROSCIENCE, 2016, 10
  • [8] The leaky integrate-and-fire neuron model for a rigid and a non-rigid object tracking
    Yedjour, Hayat
    Meftah, Boudjelal
    Yedj, Dounia
    Benyettou, Abdelkader
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND NEW TECHNOLOGIES (ICSENT '18), 2018,
  • [9] Artificial Leaky Integrate-and-Fire Sensory Neuron for In-Sensor Computing Neuromorphic Perception at the Edge
    Yuan, Yubin
    Gao, Runyu
    Wu, Qiang
    Fang, Shengli
    Bu, Xiangrui
    Cui, Yilin
    Han, Chuanyu
    Hu, Long
    Li, Xin
    Wang, Xiaoli
    Geng, Li
    Liu, Weihua
    ACS SENSORS, 2023, 8 (07) : 2646 - 2655
  • [10] Single SiGe Transistor Based Energy-Efficient Leaky Integrate-and-Fire Neuron for Neuromorphic Computing
    Khanday, Mudasir A.
    Khanday, Farooq A.
    Bashir, Faisal
    NEURAL PROCESSING LETTERS, 2023, 55 (06) : 6997 - 7007