CONNECTING GENERALIZED PRIESTLEY DUALITY TO HOFMANN-MISLOVE-STRALKA DUALITY

被引:0
作者
Bezhanishvili, G. [1 ]
Carai, L. [1 ]
Morandi, P. J. [1 ]
机构
[1] New Mexico State Univ, Las Cruces, NM 88003 USA
来源
THEORY AND APPLICATIONS OF CATEGORIES | 2024年 / 41卷
关键词
Stone duality; Priestley duality; semilattice; algebraic lattice; algebraic frame; coherent frame; TOPOLOGICAL DUALITY; LATTICE EXPANSIONS; REPRESENTATION; VARIETIES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We connect Priestley duality for distributive lattices and its generalization to distributive meet-semilattices to Hofmann-Mislove-Stralka duality for semilattices. Among other things, this involves consideration of various morphisms between algebraic frames. We also show how Stone duality for boolean algebras and generalized boolean algebras fits as a particular case of the general picture we develop.
引用
收藏
页码:1937 / 1982
页数:46
相关论文
共 24 条
  • [1] CONNECTING GENERALIZED PRIESTLEY DUALITY TO HOFMANN-MISLOVE-STRALKA DUALITY
    Bezhanishvili, G.
    Carai, L.
    Morandi, P. J.
    THEORY AND APPLICATIONS OF CATEGORIES, 2024, 41
  • [2] Hofmann–Mislove through the lenses of Priestley
    Guram Bezhanishvili
    Sebastian Melzer
    Semigroup Forum, 2022, 105 : 825 - 833
  • [3] Hofmann-Mislove through the lenses of Priestley
    Bezhanishvili, Guram
    Melzer, Sebastian
    SEMIGROUP FORUM, 2022, 105 (03) : 825 - 833
  • [4] Algebraic frames in Priestley duality
    Bezhanishvili, Guram
    Melzer, Sebastian D.
    ALGEBRA UNIVERSALIS, 2025, 86 (01)
  • [5] A non-commutative Priestley duality
    Bauer, Andrej
    Cvetko-Vah, Karin
    Gehrke, Mai
    van Gool, Samuel J.
    Kudryavtseva, Ganna
    TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (12) : 1423 - 1438
  • [6] Lattice subordinations and Priestley duality
    Bezhanishvili, Guram
    ALGEBRA UNIVERSALIS, 2013, 70 (04) : 359 - 377
  • [7] Lattice subordinations and Priestley duality
    Guram Bezhanishvili
    Algebra universalis, 2013, 70 : 359 - 377
  • [8] Priestley duality for N4-lattices
    Jansana, Ramon
    Rivieccio, Umberto
    PROCEEDINGS OF THE 8TH CONFERENCE OF THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT-13), 2013, 32 : 223 - 229
  • [9] Duality theory for enriched Priestley spaces
    Hofmann, Dirk
    Nora, Pedro
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (03)
  • [10] Priestley Duality for Strong Proximity Lattices
    El-Zawawy, Mohamed A.
    Jung, Achim
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2006, 158 : 199 - 217