A Perturbative Approach to the Solution of the Thirring Quantum Cellular Automaton

被引:1
作者
Bisio, Alessandro [1 ,2 ]
Perinotti, Paolo [1 ,2 ]
Pizzamiglio, Andrea [1 ,2 ]
Rota, Saverio [1 ]
机构
[1] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy
[2] Ist Nazl Fis Nucleare Sez Pavia, Via Agostino Bassi 6, I-27100 Pavia, Italy
关键词
quantum cellular automata; Thirring quantum cellular automaton; path sum solution; perturbative approach; DIRAC; FIELD;
D O I
10.3390/e27020198
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Thirring Quantum Cellular Automaton (QCA) describes the discrete time dynamics of local fermionic modes that evolve according to one step of the Dirac cellular automaton, followed by the most general on-site number-preserving interaction, and serves as the QCA counterpart of the Thirring model in quantum field theory. In this work, we develop perturbative techniques for the QCA path sum approach, expanding both the number of interaction vertices and the mass parameter of the Thirring QCA. By classifying paths within the regimes of very light and very heavy particles, we computed the transition amplitudes in the two- and three-particle sectors to the first few orders. Our investigation into the properties of the Thirring QCA, addressing the combinatorial complexity of the problem, yielded some useful results applicable to the many-particle sector of any on-site number-preserving interactions in one spatial dimension.
引用
收藏
页数:30
相关论文
共 52 条
[1]   Symmetries of the Dirac quantum walk and emergence of the de Sitter group [J].
Apadula, Luca ;
Bisio, Alessandro ;
D'Ariano, Giacomo Mauro ;
Perinotti, Paolo .
JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (08)
[2]   Quantum walks and non-Abelian discrete gauge theory [J].
Arnault, Pablo ;
Di Molfetta, Giuseppe ;
Brachet, Marc ;
Debbasch, Fabrice .
PHYSICAL REVIEW A, 2016, 94 (01)
[3]   An overview of quantum cellular automata [J].
Arrighi, P. .
NATURAL COMPUTING, 2019, 18 (04) :885-899
[4]   A quantum cellular automaton for one-dimensional QED [J].
Arrighi, Pablo ;
Beny, Cedric ;
Farrelly, Terry .
QUANTUM INFORMATION PROCESSING, 2020, 19 (03)
[5]   A Gauge-Invariant Reversible Cellular Automaton [J].
Arrighi, Pablo ;
Di Molfetta, Giuseppe ;
Eon, Nathanael .
CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS, AUTOMATA 2018, 2018, 10875 :1-12
[6]   Quantum causal graph dynamics [J].
Arrighi, Pablo ;
Martiel, Simon .
PHYSICAL REVIEW D, 2017, 96 (02)
[7]   Discrete Lorentz covariance for quantum walks and quantum cellular automata [J].
Arrighi, Pablo ;
Facchini, Stefano ;
Forets, Marcelo .
NEW JOURNAL OF PHYSICS, 2014, 16
[8]   Inferring effective field observables from a discrete model [J].
Beny, Cedric .
NEW JOURNAL OF PHYSICS, 2017, 19
[9]   WEYL, DIRAC, AND MAXWELL EQUATIONS ON A LATTICE AS UNITARY CELLULAR-AUTOMATA [J].
BIALYNICKIBIRULA, I .
PHYSICAL REVIEW D, 1994, 49 (12) :6920-6927
[10]   Doubly special relativity from quantum cellular automata [J].
Bibeau-Delisle, A. ;
Bisio, A. ;
D'Ariano, G. M. ;
Perinotti, P. ;
Tosini, A. .
EPL, 2015, 109 (05)