Removal of fuel retention by direct-current glow discharge under strong magnetic field in EAST superconducting tokamak

被引:0
作者
Sun, Hao [1 ,2 ]
Yu, Yaowei [2 ]
Cao, Bin [2 ]
Zuo, Guizhong [2 ]
Hu, Jiansheng [2 ]
机构
[1] Univ Sci & Technol China, Hefei, Peoples R China
[2] Chinese Acad Sci, Inst Plasma Phys, Hefei Inst Phys Sci, Hefei, Peoples R China
关键词
wall conditioning; GDC; fuel removal; strong magnetic field; EAST; ICR CLEANINGS; FUSION; TRITIUM; RELEASE; DEVICES; WALL; D-2; HE;
D O I
10.1088/1741-4326/adafc5
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent research has been conducted on the removal of retained fuel particles from the first wall surfaces in the EAST superconducting tokamak, by using direct-current Glow Discharge Cleaning (GDC) under strong magnetic field. The findings from these experiments reveal that GDC can operate in a toroidal field range of 0-2.5 T and achieve high fuel removal rate despite the plasma is strongly confined by the magnetic field. The cleaning process primarily targets the side portion of the limiter adjacent to the GDC anodes on the low field side via thermal desorption to access areas that are typically inaccessible to other plasma types. Additionally, pulsed GDC is less effective than continuous GDC operation under intense magnetic field conditions. The efficiency of pulsed GDC mainly depends on the GDC duty cycle, which further suggests that thermal desorption is the predominant cleaning mechanism in the strong magnetic environment. The integration of Ion Cyclotron Wall Conditioning (ICWC) with GDC in a pulsed mode yields an efficiency increase of roughly 35% over ICWC alone. Furthermore, the new integration cleaning mode can effectively extend the cleaning area. A potential synergy with a variety of discharge cleaning techniques could further extend the cleaning area and improve the efficiency of tritium removal. These insights serve as crucial benchmarks for the removal of retained tritium in the presence of strong magnetic fields in future fusion reactors.
引用
收藏
页数:13
相关论文
共 40 条
[1]   EXPERIMENTS ON THE RELEASE OF TRITIUM FROM THE 1ST WALL OF JET [J].
ANDREW, P ;
COAD, JP ;
EHRENBERG, J ;
GOODALL, DHJ ;
HORTON, LD ;
JARVIS, ON ;
LOMAS, PJ ;
LOUGHLIN, MJ ;
MCCRACKEN, GM ;
PEACOCK, AT ;
PICK, MA ;
SAIBENE, G ;
SARTORI, R ;
THOMAS, PR .
NUCLEAR FUSION, 1993, 33 (09) :1389-1404
[2]   Tritium retention in next step devices and the requirements for mitigation and removal techniques [J].
Counsell, G. ;
Coad, P. ;
Grisola, C. ;
Hopf, C. ;
Jacob, W. ;
Kirschner, A. ;
Kreter, A. ;
Krieger, K. ;
Likonen, J. ;
Philipps, V. ;
Roth, J. ;
Rubel, M. ;
Salancon, E. ;
Semerok, A. ;
Tabares, F. L. ;
Widdowson, A. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (12B) :B189-B199
[3]   Review of radio frequency conditioning discharges with magnetic fields in superconducting fusion reactors [J].
de la Cal, E ;
Gauthier, E .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (02) :197-218
[4]   First-wall cleaning and isotope control studies by D-2 ICRF conditioning in Tore Supra with a permanent magnetic field [J].
delaCal, E ;
Gauthier, E .
PLASMA PHYSICS AND CONTROLLED FUSION, 1997, 39 (07) :1083-1099
[5]   Wall conditioning for ITER: Current experimental and modeling activities [J].
Douai, D. ;
Kogut, D. ;
Wauters, T. ;
Brezinsek, S. ;
Hagelaar, G. J. M. ;
Hong, S. H. ;
Lomas, P. J. ;
Lyssoivan, A. ;
Nunes, I. ;
Pitts, R. A. ;
Rohde, V. ;
de Vries, P. C. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 463 :150-156
[6]   Recent results on Ion Cyclotron Wall Conditioning in mid and large size tokamaks [J].
Douai, D. ;
Lyssoivan, A. ;
Philipps, V. ;
Rohde, V. ;
Wauters, T. ;
Blackman, T. ;
Bobkov, V. ;
Bremond, S. ;
Brezinsek, S. ;
Clairet, F. ;
de la Cal, E. ;
Coyne, T. ;
Gauthier, E. ;
Gerbaud, T. ;
Graham, M. ;
Jachmich, S. ;
Joffrin, E. ;
Koch, R. ;
Kreter, A. ;
Laengner, R. ;
Lamalle, P. U. ;
Lerche, E. ;
Lombard, G. ;
Maslov, M. ;
Mayoral, M. -L. ;
Miller, A. ;
Monakhov, I. ;
Noterdaeme, J. -M. ;
Ongena, J. ;
Paul, M. K. ;
Pegourie, B. ;
Pitts, R. A. ;
Plyusnin, V. ;
Schueller, F. C. ;
Sergienko, G. ;
Shimada, M. ;
Sirinelli, A. ;
Suttrop, W. ;
Sozzi, C. ;
Tsalas, M. ;
Tsitrone, E. ;
Unterberg, B. ;
Van Eester, D. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) :S1021-S1028
[7]   Plasma-material interactions in current tokamaks and their implications for next step fusion reactors [J].
Federici, G ;
Skinner, CH ;
Brooks, JN ;
Coad, JP ;
Grisolia, C ;
Haasz, AA ;
Hassanein, A ;
Philipps, V ;
Pitcher, CS ;
Roth, J ;
Wampler, WR ;
Whyte, DG .
NUCLEAR FUSION, 2001, 41 (12R) :1967-2137
[8]  
Gauthier E, 1997, J NUCL MATER, V241, P553, DOI 10.1016/S0022-3115(96)00563-6
[9]   Overview of recent experimental results on the EAST Tokamak [J].
Gong, X. ;
Song, Yuntao ;
Wan, Baonian ;
Li, Jiangang ;
Wan, Yuanxi ;
Wu, Xinchao ;
Liu, Fukun ;
Chen, Junling ;
Hu, Jiansheng ;
Xu, Guosheng ;
Lu, Kun ;
Xiao, Bingjia ;
Wu, Yu ;
Gao, Xiang ;
Yao, Damao ;
Xiang, Nong ;
Hu, Liqun ;
Hu, Chundong ;
Wu, Jiefeng ;
Shen, Biao ;
Gao, Ge ;
Huang, Yiyun ;
Xu, Liuwei ;
Zhang, Qiyong ;
Bae, Cheonho ;
Cao, Bin ;
Cao, Lei ;
Chang, Jiafeng ;
Chen, Dalong ;
Chen, Ran ;
Chen, Xiaojiao ;
Chen, Yebin ;
Chen, Yue ;
Cheng, Yunxin ;
Cheng, Yong ;
Ding, Bojiang ;
Ding, Fang ;
Ding, Rui ;
Du, Shijun ;
Duan, Yanmin ;
Fu, Jia ;
Gao, Daming ;
Gao, Wei ;
Gu, Yongqi ;
Guo, Bin ;
Guo, Fei ;
Guo, Yong ;
Han, Xiaofeng ;
He, Shiying ;
Hu, Ailan .
NUCLEAR FUSION, 2024, 64 (11)
[10]   Integrated operation of steady-state long-pulse H-mode in Experimental Advanced Superconducting Tokamak [J].
Gong, X. ;
Garofalo, A. M. ;
Huang, J. ;
Qian, J. ;
Holcomb, C. T. ;
Ekedah, A. ;
Maingi, R. ;
Li, E. ;
Zeng, L. ;
Zhang, B. ;
Chen, J. ;
Wu, M. ;
Du, H. ;
Li, M. ;
Zhu, X. ;
Sun, Y. ;
Xu, G. ;
Zang, Q. ;
Wang, L. ;
Zhang, L. ;
Liu, H. ;
Lyu, B. ;
Sun, P. ;
Ding, S. ;
Zhang, X. ;
Liu, F. ;
Zhao, Y. ;
Xiao, B. ;
Hu, J. ;
Hu, C. ;
Hu, L. ;
Li, J. ;
Wan, B. .
NUCLEAR FUSION, 2019, 59 (08)