Pre-transplant and transplant parameters predict long-term survival after hematopoietic cell transplantation using machine learning

被引:0
作者
Asteris, Panagiotis G. [1 ]
Gandomi, Amir H. [2 ,3 ]
Armaghani, Danial J. [4 ]
Mohammed, Ahmed Salih [5 ]
Bousiou, Zoi [6 ]
Batsis, Ioannis [6 ]
Spyridis, Nikolaos [6 ]
Karavalakis, Georgios [6 ]
Vardi, Anna [6 ]
Triantafyllidis, Leonidas [1 ]
Koutras, Evangelos I. [1 ]
Zygouris, Nikos [1 ]
Drosopoulos, Georgios A. [7 ]
Fountas, Nikolaos A. [8 ]
Vaxevanidis, Nikolaos M. [8 ]
Bardhan, Abidhan [9 ]
Samui, Pijush [9 ]
Hatzigeorgiou, George D. [10 ]
Zhou, Jian [11 ]
Leontari, Konstantina, V [12 ]
Evangelidis, Paschalis [13 ,14 ]
Sakellari, Ioanna [6 ,12 ]
Gavriilaki, Eleni [12 ,13 ]
机构
[1] Sch Pedag & Technol Educ, Computat Mech Lab, Athens, Greece
[2] Univ Technol Sydney, Fac Engn & IT, Sydney, NSW 2007, Australia
[3] Obuda Univ, Univ Res & Innovat Ctr EKIK, H-1034 Budapest, Hungary
[4] Univ Technol Sydney, Sch Civil & Environm Engn, Sydney, NSW 2007, Australia
[5] Amer Univ Iraq, Engn Dept, Sulaimani, Kurdistan, Iraq
[6] G Papanicolaou Hosp, Hematol Dept, BMT Unit, Thessaloniki, Greece
[7] Univ Cent Lancashire, Discipline Civil Engn, Preston, England
[8] Sch Pedag & Technol Educ, Dept Mech Engn Educators, Athens, Greece
[9] Natl Inst Technol Patna, Civil Engn Dept, Patna, Bihar, India
[10] Hellen Open Univ, Thermi, Greece
[11] Cent South Univ, Changsha, Peoples R China
[12] Natl & Kapodistrian Univ Athens, Aretaieio Hosp, Athens, Greece
[13] Aristotle Univ Thessaloniki, Propedeut Dept Internal Med 2, Thessaloniki, Greece
[14] Aristotle Univ Thessaloniki, Hippocrat Hosp, Propedeut Dept Internal Med 2, Thessaloniki 54642, Greece
关键词
Allogeneic hematopoietic stem cell; transplantation; Artificial intelligence; Machine learning; Deep learning; Survival; VALIDATION; MORTALITY; DISEASE; INDEX;
D O I
10.1016/j.trim.2025.102211
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background: Allogeneic hematopoietic stem transplantation (allo-HSCT) constitutes a curative treatment for various hematological malignancies. However, various complications limit the therapeutic efficacy of this approach, increasing the morbidity and decreasing the overall survival of allo-HSCT recipients. In everyday clinical practice, various laboratory and clinical biomarkers and scorning systems have been developed and implemented focusing on the recognition of high-risk patients for organ dysfunction-related complications and those who might experience low overall survival. However, the predictive accuracy of developed scores has been reported deficient in some studies. The aim of the current retrospective study is to develop a machine learning (ML) model to predict the long-term survivorship of patients who receive allo-HSCT based on clinical pre- and post-allo-HSCT variables, and on transplantation-related characteristics. Methods: For this purpose, a database of 564 allo-HSCT recipients incorporating 16 clinical and laboratory variables and the survivorship status of the patients during follow-up (Alive, Dead, Alive but follow-up less than 24 months) was used. An ML model was developed and tested, based on the previously published Data Ensemble Refinement Greedy Algorithm (DEGRA) algorithm. Results: A predictive ML model was built with 92.02 % accuracy. The eight parameters included in the algorithm were the following: CD34+ cells infused, patients' age and gender, conditioning regimen toxicity, disease risk index (DRI), graft source, and platelet and neutrophil engraftment. Conclusion: To our knowledge, this is the first AI model incorporating post-HSCT variables for the prediction of mortality in adult HSCT recipients. In the era of precision medicine, the recognition of patients who undergo alloHSCT and face a great risk for mortality and morbidity, with high-accuracy algorithms is crucial.
引用
收藏
页数:6
相关论文
共 32 条
  • [1] Biomarkers for Allogeneic HCT Outcomes
    Adom, Djamilatou
    Rowan, Courtney
    Adeniyan, Titilayo
    Yang, Jinfeng
    Paczesny, Sophie
    [J]. FRONTIERS IN IMMUNOLOGY, 2020, 11
  • [2] [Anonymous], 2022, The EBMT/EHA CAR-T Cell Handbook
  • [3] Validation and refinement of the Disease Risk Index for allogeneic stem cell transplantation
    Armand, Philippe
    Kim, Haesook T.
    Logan, Brent R.
    Wang, Zhiwei
    Alyea, Edwin P.
    Kalaycio, Matt E.
    Maziarz, Richard T.
    Antin, Joseph H.
    Soiffer, Robert J.
    Weisdorf, Daniel J.
    Rizzo, J. Douglas
    Horowitz, Mary M.
    Saber, Wael
    [J]. BLOOD, 2014, 123 (23) : 3664 - 3671
  • [4] Revealing the nature of cardiovascular disease using DERGA, a novel data ensemble refinement greedy algorithm
    Asteris, Panagiotis G.
    Gavriilaki, Eleni
    Kampaktsis, Polydoros N.
    Gandomi, Amir H.
    Armaghani, Danial J.
    Tsoukalas, Markos Z.
    Avgerinos, Dimitrios, V
    Grigoriadis, Savvas
    Kotsiou, Nikolaos
    Yannaki, Efthalia
    Drougkas, Anastasios
    Bardhan, Abidhan
    Cavaleri, Liborio
    Formisano, Antonio
    Mohammed, Ahmed Salih
    Murlidhar, Bhatawdekar Ramesh
    Paudel, Satish
    Samui, Pijush
    Zhou, Jian
    Sarafidis, Panteleimon
    Virdis, Agostino
    Gkaliagkousi, Eugenia
    [J]. INTERNATIONAL JOURNAL OF CARDIOLOGY, 2024, 412
  • [5] Prognosis of COVID-19 severity using DERGA, a novel machine learning algorithm
    Asteris, Panagiotis G.
    Gandomi, Amir H.
    Armaghani, Danial J.
    Kokoris, Styliani
    Papandreadi, Anastasia T.
    Roumelioti, Anna
    Papanikolaou, Stefanos
    Tsoukalas, Markos Z.
    Triantafyllidis, Leonidas
    Koutras, Evangelos I.
    Bardhan, Abidhan
    Mohammed, Ahmed Salih
    Naderpour, Hosein
    Paudel, Satish
    Samui, Pijush
    Ntanasis-Stathopoulos, Ioannis
    Dimopoulos, Meletios A.
    Terpos, Evangelos
    [J]. EUROPEAN JOURNAL OF INTERNAL MEDICINE, 2024, 125 : 67 - 73
  • [6] Genetic justification of COVID-19 patient outcomes using DERGA, a novel data ensemble refinement greedy algorithm
    Asteris, Panagiotis G.
    Gandomi, Amir H.
    Armaghani, Danial J.
    Tsoukalas, Markos Z.
    Gavriilaki, Eleni
    Gerber, Gloria
    Konstantakatos, Gerasimos
    Skentou, Athanasia D.
    Triantafyllidis, Leonidas
    Kotsiou, Nikolaos
    Braunstein, Evan
    Chen, Hang
    Brodsky, Robert
    Touloumenidou, Tasoula
    Sakellari, Ioanna
    Alkayem, Nizar Faisal
    Bardhan, Abidhan
    Cao, Maosen
    Cavaleri, Liborio
    Formisano, Antonio
    Guney, Deniz
    Hasanipanah, Mahdi
    Khandelwal, Manoj
    Mohammed, Ahmed Salih
    Samui, Pijush
    Zhou, Jian
    Terpos, Evangelos
    Dimopoulos, Meletios A.
    [J]. JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2024, 28 (04)
  • [7] [曹莹 Cao Ying], 2013, [自动化学报, Acta Automatica Sinica], V39, P745
  • [8] Time-dependent prediction of mortality and cytomegalovirus reactivation after allogeneic hematopoietic cell transplantation using machine learning
    Eisenberg, Lisa
    Brossette, Christian
    Rauch, Jochen
    Grandjean, Andrea
    Ottinger, Hellmut
    Rissland, Jurgen
    Schwarz, Ulf
    Graf, Norbert
    Beelen, Dietrich W.
    Kiefer, Stephan
    Pfeifer, Nico
    Turki, Amin T.
    [J]. AMERICAN JOURNAL OF HEMATOLOGY, 2022, 97 (10) : 1309 - 1323
  • [9] Stochastic gradient boosting
    Friedman, JH
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 38 (04) : 367 - 378
  • [10] Endothelial and Complement Activation As Predictors of Survival in Adult Allogeneic Hematopoietic Cell Transplantation
    Gavriilaki, Eleni
    Sakellari, Ioanna
    Chatzikonstantinou, Thomas
    Mallouri, Despina
    Batsis, Ioannis
    Vardi, Anna
    Bousiou, Zoi
    Koravou, Eudoxia-Evaggelia
    Masmanidou, Marianna
    Touloumenidou, Tasoula
    Papalexandri, Apostolia
    Athanasiadou, Anastasia
    Yannaki, Evangelia
    Anagnostopoulos, Achilles
    [J]. HEMASPHERE, 2021, 5 (01):