On eventually greedy best underapproximations by Egyptian fractions

被引:0
作者
Kovac, Vjekoslav [1 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Math, Bijenicka Cesta 30, Zagreb 10000, Croatia
关键词
Unit fraction; Underapproximation; Greedy algorithm; Lebesgue measure;
D O I
10.1016/j.jnt.2024.09.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Erd & odblac;s and Graham found it conceivable that the best nterm Egyptian underapproximation of almost every positive number for sufficiently large n gets constructed in a greedy manner, i.e., from the best (n - 1)-term Egyptian underapproximation. We show that the opposite is true: the set of real numbers with this property has Lebesgue measure zero. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:39 / 48
页数:10
相关论文
共 18 条
[1]  
Bloom T. F., 2022, NIEUW ARCH WISKD, V23, P237
[2]  
Bloom Thomas F., Erds problems
[3]  
Chu HV, 2024, Arxiv, DOI [arXiv:2306.12564, /10.1016/j.indag.2024.01.006, DOI 10.1016/J.INDAG.2024.01.006]
[4]  
Conlon D., arXiv
[5]  
CURTISS DR, 1922, AM MATH MONTHLY, V29, P380
[6]   Diophantine m-tuples in finite fields and modular forms [J].
Dujella, Andrej ;
Kazalicki, Matija .
RESEARCH IN NUMBER THEORY, 2021, 7 (01)
[7]  
Erdos P., 1950, Mat. Lapok, V1, P192
[8]  
Erdos P., 1980, OLD NEW PROBLEMS RES
[9]  
Graham RL, 2013, BOLYAI SOC MATH STUD, V25, P289
[10]  
Green Richard, Egyptian fractions