Multi-immunometabolomics mining: NP prevents hyperimmune in ALI by inhibiting Leucine/PI3K/Akt/mTOR signaling pathway

被引:0
作者
Zhao, Mantong [1 ,2 ]
Lin, Jiazi [1 ,2 ]
Wang, Xiao [1 ,2 ]
Chen, Chengkai [1 ,2 ]
Li, Jianhua [1 ,2 ]
Yu, Jiamin [1 ,2 ]
Zhou, Tong [1 ,2 ]
Liang, Yefang [1 ,2 ]
Shen, Xuejuan [1 ,2 ]
Shi, Ruixiang [1 ,2 ]
Yang, Simin [1 ,2 ]
Zeng, Shuting [1 ,2 ]
Deng, Yongan [1 ,2 ]
Duan, Xiaodong [1 ,2 ]
Zhou, Lichang [4 ]
Sun, Xiaobo [3 ]
Wang, Yi [2 ]
Shu, Zunpeng [1 ]
机构
[1] Beijing Normal Univ, Fac Arts & Sci, Key Lab Cell Proliferat & Regulat Biol, Minist Educ,Dept Biol, Zhuhai 519087, Peoples R China
[2] Guangdong Pharmaceut Univ, Sch Chinese Mat Med, Guangzhou 510006, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Inst Med Plant Dev, Beijing 100193, Peoples R China
[4] Ruyuan Yao Autonomous Cty Agr Technol Promot Ctr, Shaoguan 512700, Peoples R China
基金
中国国家自然科学基金;
关键词
Nicandra physalodes; Acute lung injury; Immunometabolomic; Autophagy; Inflammation; Leucine; ACUTE LUNG INJURY; LEUCINE; DIFFERENTIATION; DRUG;
D O I
10.1016/j.freeradbiomed.2024.09.053
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Acute lung injury (ALI) is currently a global health concern. Nicandra physalodes (L.) Gaertn. (NP) holds an important position in traditional Chinese medicine and nutrition. The potential protective mechanisms of NP against ALI remain unknown. The purpose of this study was to investigate the protective effects and molecular mechanisms of NP extract (NPE) on lipopolysaccharide (LPS)-induced ALI in mice. By utilizing network pharmacology to forecast the active ingredients in NP as well as possible signaling pathways. The composition of the NPE was analyzed using UPLC-Q-TOF-MS/MS. In addition, 1 H-NMR immunometabolomics was employed to identify alterations in primary metabolic pathways and metabolites in the lung, serum, and fecal tissues. Finally, the protein and gene expression of key pathways were verified by IHC, IF, RT-qPCR, and ELISA. It was found that the main ingredients of NPE were revealed to be nicandrenone, withanolide A, and baicalin. NPE significantly improved lung injury, pulmonary edema, and inflammatory cell infiltration in mice with ALI. In addition, NPE improved autophagic activity and alleviated Th1 and Th17 cell-induced lung inflammation by suppressing the PI3K/Akt/mTOR signaling pathway. Importantly, immunometabolomic analysis of fecal, serum, and lung tissues revealed that NPE reversed ALI-induced leucine resistance by remodeling immunometabolism. We confirmed NPE prevents ALI by remodeling immunometabolism, regulating the Leucine/PI3K/Akt/mTOR signaling pathway, inhibiting Th1/Th17 cell differentiation, and providing a scientific immunological basis for the clinical application of NPE.
引用
收藏
页码:302 / 315
页数:14
相关论文
共 50 条
  • [1] Scutellarin regulates osteoarthritis in vitro by inhibiting the PI3K/AKT/mTOR signaling pathway
    Ju, Shao-Hua
    Tan, Li-Rong
    Liu, Pan-Wang
    Tan, You-Li
    Zhang, Yuan-Ting
    Li, Xiao-Hong
    Wang, Ming-Jian
    He, Ben-Xiang
    MOLECULAR MEDICINE REPORTS, 2021, 23 (01)
  • [2] Cadmium accelerates autophagy of osteocytes by inhibiting the PI3K/AKT/mTOR signaling pathway
    Song, Ruilong
    He, Shuangjiang
    Cao, Ying
    Lu, Yicheng
    Peng, Yunwen
    Zou, Hui
    Tong, Xishuai
    Ran, Di
    Ma, Yonggang
    Liu, Zongping
    ENVIRONMENTAL TOXICOLOGY, 2023, 38 (08) : 1980 - 1988
  • [3] Calcium Dobesilate Restores Autophagy by Inhibiting the VEGF/PI3K/AKT/mTOR Signaling Pathway
    Wang, Yue
    Lu, Yun-hong
    Tang, Chao
    Xue, Mei
    Li, Xiao-yu
    Chang, Yun-peng
    Cheng, Ying
    Li, Ting
    Yu, Xiao-chen
    Sun, Bei
    Li, Chun-jun
    Chen, Li-ming
    FRONTIERS IN PHARMACOLOGY, 2019, 10
  • [4] Effect of glucocorticoids on SCN injury and the PI3K/AKT/mTOR signaling pathway
    Yao, Zhipeng
    Liu, Wenge
    Zhou, Linquan
    Song, Chenyang
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2020, 13 (05): : 3679 - 3685
  • [5] Rapamycin reduces podocyte damage by inhibiting the PI3K/AKT/mTOR signaling pathway and promoting autophagy
    Yu, Shengyou
    Ren, Qi
    Chen, Jing
    Huang, Jing
    Liang, Rui
    EUROPEAN JOURNAL OF INFLAMMATION, 2022, 20
  • [6] Rapamycin reduces podocyte damage by inhibiting the PI3K/AKT/mTOR signaling pathway and promoting autophagy
    Yu, Shengyou
    Ren, Qi
    Chen, Jing
    Huang, Jing
    Liang, Rui
    EUROPEAN JOURNAL OF INFLAMMATION, 2022, 20
  • [7] The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review
    Sun, K.
    Luo, J.
    Guo, J.
    Yao, X.
    Jing, X.
    Guo, F.
    OSTEOARTHRITIS AND CARTILAGE, 2020, 28 (04) : 400 - 409
  • [8] Fluoride induces osteoblast autophagy by inhibiting the PI3K/AKT/mTOR signaling pathway in vivo and in vitro
    Yan, Linghu
    Deng, Chao-Nan
    He, Li
    Wu, Qi
    Xu, Lin
    Yu, Yan-Ni
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2023, 248 (13) : 1159 - 1172
  • [9] Leucine attenuates muscle atrophy and autophagosome formation by activating PI3K/AKT/mTOR signaling pathway in rotator cuff tears
    Rongzong Zheng
    Shuming Huang
    Junkun Zhu
    Wei Lin
    Huan Xu
    Xiang Zheng
    Cell and Tissue Research, 2019, 378 : 113 - 125
  • [10] Hydrogen sulphide promotes osteoclastogenesis by inhibiting autophagy through the PI3K/AKT/mTOR pathway
    Ma, Jun
    Du, Di
    Liu, Jia
    Guo, Lei
    Li, Yongchuan
    Chen, Aimin
    Ye, TianWen
    JOURNAL OF DRUG TARGETING, 2020, 28 (02) : 176 - 185