Asymptotic confidence interval for R2 in multiple linear regression

被引:0
作者
Dedecker, J. [1 ]
Guedj, O. [2 ]
Taupin, M. L. [2 ]
机构
[1] Univ Paris Cite, Lab MAP5, UMR CNRS 8145, Paris, France
[2] Univ Paris Saclay, Univ Evry Val Essonne, Labe LaMME, UMR CNRS 8071, Gif Sur Yvette, France
关键词
Multiple correlation coefficient; asymptotic distribution; robustness; heteroscedasticity; screening; CENTRAL-LIMIT-THEOREM; CORRELATION-COEFFICIENT; SAMPLING DISTRIBUTION; HETEROSKEDASTICITY; MODELS;
D O I
10.1080/02331888.2024.2428978
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Following White's approach of robust multiple linear regression [White H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 1980;48(4):817-838], we give asymptotic confidence intervals for the multiple correlation coefficient $ R<^>2 $ R2 under minimal moment conditions. We also give the asymptotic joint distribution of the empirical estimators of the individual $ R<^>2 $ R2's. Through different sets of simulations, we show that the procedure is indeed robust (contrary to the procedure involving the near exact distribution of the empirical estimator of $ R<^>2 $ R2 is the multivariate Gaussian case) and can be also applied to count linear regression. Several extensions are also discussed, as well as an application to robust screening.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 50 条
[41]   Black hole solutions in R2 gravity [J].
Kehagias, Alex ;
Kounnas, Costas ;
Luest, Dieter ;
Riotto, Antonio .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (05)
[42]   Tachyonic preheating in Palatini R2 inflation [J].
Karam, Alexandros ;
Tomberg, Eemeli ;
Veermae, Hardi .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (06)
[43]   Gauging the R symmetry of old minimal R plus R2 supergravity [J].
Aldabergenov, Yermek .
PHYSICAL REVIEW D, 2022, 105 (12)
[44]   Multiple linear regression model under nonnormality [J].
Islam, MQ ;
Tiku, ML .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (10) :2443-2467
[45]   Spotting deviations from R2 inflation [J].
de la Cruz-Dombriz, Alvaro ;
Elizalde, Emilio ;
Odintsov, Sergei D. ;
Saez-Gomez, Diego .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (05)
[46]   Do you know your r2? [J].
Avdeef, Alex .
ADMET AND DMPK, 2021, 9 (01) :69-74
[47]   The intelligibility of r or r2 as an effect size statistic: dichotomous variables [J].
Trafimow, David .
FRONTIERS IN PSYCHOLOGY, 2015, 6
[48]   An Adaptive Adjustment to the R2 Statistic in High-Dimensional Elliptical Models [J].
Hong, Shizhe ;
Li, Weiming ;
Liu, Qiang ;
Zhang, Yangchun .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2025,
[49]   On the Possibilistic Approach to Linear Regression with Rounded or Interval-Censored Data [J].
Cerny, Michal ;
Rada, Miroslav .
MEASUREMENT SCIENCE REVIEW, 2011, 11 (02) :34-40
[50]   Exact Confidence Regions for Linear Regression Parameter under External Arbitrary Noise [J].
Senov, Alexander ;
Amelin, Konstantin ;
Amelina, Natalia ;
Granichin, Oleg .
2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, :5097-5102