Asymptotic confidence interval for R2 in multiple linear regression

被引:0
作者
Dedecker, J. [1 ]
Guedj, O. [2 ]
Taupin, M. L. [2 ]
机构
[1] Univ Paris Cite, Lab MAP5, UMR CNRS 8145, Paris, France
[2] Univ Paris Saclay, Univ Evry Val Essonne, Labe LaMME, UMR CNRS 8071, Gif Sur Yvette, France
关键词
Multiple correlation coefficient; asymptotic distribution; robustness; heteroscedasticity; screening; CENTRAL-LIMIT-THEOREM; CORRELATION-COEFFICIENT; SAMPLING DISTRIBUTION; HETEROSKEDASTICITY; MODELS;
D O I
10.1080/02331888.2024.2428978
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Following White's approach of robust multiple linear regression [White H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 1980;48(4):817-838], we give asymptotic confidence intervals for the multiple correlation coefficient $ R<^>2 $ R2 under minimal moment conditions. We also give the asymptotic joint distribution of the empirical estimators of the individual $ R<^>2 $ R2's. Through different sets of simulations, we show that the procedure is indeed robust (contrary to the procedure involving the near exact distribution of the empirical estimator of $ R<^>2 $ R2 is the multivariate Gaussian case) and can be also applied to count linear regression. Several extensions are also discussed, as well as an application to robust screening.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 50 条
[31]   Confidence Intervals for Distinguishing Ordinal and Disordinal Interactions in Multiple Regression [J].
Lee, Sunbok ;
Lei, Man-Kit ;
Brody, Gene H. .
PSYCHOLOGICAL METHODS, 2015, 20 (02) :245-258
[32]   Radial Basis Function Networks With Linear Interval Regression Weights for Symbolic Interval Data [J].
Su, Shun-Feng ;
Chuang, Chen-Chia ;
Tao, C. W. ;
Jeng, Jin-Tsong ;
Hsiao, Chih-Ching .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (01) :69-80
[34]   Linear regression analysis for interval-valued functional data [J].
Nasirzadeh, Roya ;
Nasirzadeh, Fariba ;
Mohammadi, Zohreh .
STAT, 2021, 10 (01)
[35]   Simple linear regression with interval censored dependent and independent variables [J].
de Lima Taga, Marcel F. ;
Singer, Julio M. .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (01) :198-207
[36]   A new method of linear support vector regression with interval data [J].
Baymani, Mojtaba ;
Salehi-M, Nima ;
Saffaran, Hoda .
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02) :857-+
[37]   Anisotropic cosmological solutions in R plus R2 gravity [J].
Mueller, Daniel ;
Ricciardone, Angelo ;
Starobinsky, Alexei A. ;
Toporensky, Aleksey .
EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (04)
[38]   Dark matter and inflation in R plus ζ R2 supergravity [J].
Addazi, Andrea ;
Khlopov, Maxim Yu. .
PHYSICS LETTERS B, 2017, 766 :17-22
[39]   Stability of compact stars in αR2 + β(RγδTγδ ) gravity [J].
Yousaf, Z. ;
Bhatti, M. Zaeem-ul-Haq ;
Farwa, Ume .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 464 (04) :4509-4519
[40]   New confidence interval estimator of the signal-to-noise ratio based on asymptotic sampling distribution [J].
Albatineh, Ahmed N. ;
Boubakari, Ibrahimou ;
Kibria, B. M. Golam .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (02) :574-590