Asymptotic confidence interval for R2 in multiple linear regression

被引:0
作者
Dedecker, J. [1 ]
Guedj, O. [2 ]
Taupin, M. L. [2 ]
机构
[1] Univ Paris Cite, Lab MAP5, UMR CNRS 8145, Paris, France
[2] Univ Paris Saclay, Univ Evry Val Essonne, Labe LaMME, UMR CNRS 8071, Gif Sur Yvette, France
关键词
Multiple correlation coefficient; asymptotic distribution; robustness; heteroscedasticity; screening; CENTRAL-LIMIT-THEOREM; CORRELATION-COEFFICIENT; SAMPLING DISTRIBUTION; HETEROSKEDASTICITY; MODELS;
D O I
10.1080/02331888.2024.2428978
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Following White's approach of robust multiple linear regression [White H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 1980;48(4):817-838], we give asymptotic confidence intervals for the multiple correlation coefficient $ R<^>2 $ R2 under minimal moment conditions. We also give the asymptotic joint distribution of the empirical estimators of the individual $ R<^>2 $ R2's. Through different sets of simulations, we show that the procedure is indeed robust (contrary to the procedure involving the near exact distribution of the empirical estimator of $ R<^>2 $ R2 is the multivariate Gaussian case) and can be also applied to count linear regression. Several extensions are also discussed, as well as an application to robust screening.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 50 条
[21]   Simultaneous Confidence Bands for Linear Regression with Covariates Constrained in Intervals [J].
Liu, Wei ;
Ah-Kine, Pascal ;
Zhou, Sanyu .
SCANDINAVIAN JOURNAL OF STATISTICS, 2012, 39 (03) :543-553
[22]   Non-Asymptotic Confidence Sets for the Parameters of Linear Transfer Functions [J].
Campi, Marco C. ;
Weyer, Erik .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (12) :2708-2720
[23]   R plus αR2 loop quantum cosmology [J].
Amoros, Jaume ;
de Haro, Jaume ;
Odintsov, Sergei D. .
PHYSICAL REVIEW D, 2014, 89 (10)
[24]   betaDelta and betaSandwich: Confidence Intervals for Standardized Regression Coefficients in R [J].
Pesigan, Ivan Jacob Agaloos ;
Sun, Rong Wei ;
Cheung, Shu Fai .
MULTIVARIATE BEHAVIORAL RESEARCH, 2023, 58 (06) :1183-1186
[25]   A Constrained Linear Estimator for Multiple Regression [J].
Davis-Stober, Clintin P. ;
Dana, Jason ;
Budescu, David V. .
PSYCHOMETRIKA, 2010, 75 (03) :521-541
[26]   Cosmological evolution in R2 gravity [J].
Arbuzova, E. V. ;
Dolgov, A. D. ;
Reverberi, L. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2012, (02)
[27]   Palatini R2 quintessential inflation [J].
Dimopoulos, Konstantinos ;
Karam, Alexandros ;
Lopez, Samuel Sanchez ;
Tomberg, Eemeli .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (10)
[28]   FRW Universe in R2 Gravity [J].
Sharma, Lokesh Kumar .
JOURNAL OF POLYMER & COMPOSITES, 2023, 11 :S75-S80
[29]   Linear regression: robust heteroscedastic confidence bands that have some specified simultaneous probability coverage [J].
Wilcox, Rand R. .
JOURNAL OF APPLIED STATISTICS, 2017, 44 (14) :2564-2574
[30]   Asymptotic normality of the local linear estimator of the functional expectile regression [J].
Litimein, Ouahiba ;
Laksaci, Ali ;
Ait-Hennani, Larbi ;
Mechab, Boubaker ;
Rachdi, Mustapha .
JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 202