Asymptotic confidence interval for R2 in multiple linear regression

被引:0
作者
Dedecker, J. [1 ]
Guedj, O. [2 ]
Taupin, M. L. [2 ]
机构
[1] Univ Paris Cite, Lab MAP5, UMR CNRS 8145, Paris, France
[2] Univ Paris Saclay, Univ Evry Val Essonne, Labe LaMME, UMR CNRS 8071, Gif Sur Yvette, France
关键词
Multiple correlation coefficient; asymptotic distribution; robustness; heteroscedasticity; screening; CENTRAL-LIMIT-THEOREM; CORRELATION-COEFFICIENT; SAMPLING DISTRIBUTION; HETEROSKEDASTICITY; MODELS;
D O I
10.1080/02331888.2024.2428978
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Following White's approach of robust multiple linear regression [White H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 1980;48(4):817-838], we give asymptotic confidence intervals for the multiple correlation coefficient $ R<^>2 $ R2 under minimal moment conditions. We also give the asymptotic joint distribution of the empirical estimators of the individual $ R<^>2 $ R2's. Through different sets of simulations, we show that the procedure is indeed robust (contrary to the procedure involving the near exact distribution of the empirical estimator of $ R<^>2 $ R2 is the multivariate Gaussian case) and can be also applied to count linear regression. Several extensions are also discussed, as well as an application to robust screening.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 50 条
  • [1] Confidence sets in a linear regression model for interval data
    Blanco-Fernandez, Angela
    Colubi, Ana
    Gonzalez-Rodriguez, Gil
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (06) : 1320 - 1329
  • [2] An asymptotic confidence interval for the process capability index Cpm
    Alevizakos, Vasileios
    Koukouvinos, Christos
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (20) : 5138 - 5144
  • [3] Determining confidence interval and asymptotic distribution for parameters of multiresponse semiparametric regression model using smoothing spline estimator
    Lestari, Budi
    Chamidah, Nur
    Budiantara, I. Nyoman
    Aydin, Dursun
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2023, 35 (05)
  • [4] Simultaneous Confidence Tubes in Multivariate Linear Regression
    Liu, Wei
    Han, Yang
    Wan, Fang
    Bretz, Frank
    Hayter, Anthony J.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2016, 43 (03) : 879 - 885
  • [5] R2 supergravity
    Ferrara, Sergio
    Kehagias, Alex
    Porrati, Massimo
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (08):
  • [6] Neutron stars in Palatini R plus αR2 and R plus αR2 + βQ theories
    Herzog, Georg
    Sanchis-Alepuz, Helios
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (10):
  • [7] Fast estimation and choice of confidence interval methods for step regression
    Hua, Shuangcheng
    Fong, Youyi
    Kath, Jarrod
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2022, 29 (04) : 779 - 799
  • [8] Optimal Simultaneous Confidence Bands in Multiple Linear Regression with Predictor Variables Constrained in an Ellipsoidal Region
    Ah-Kine, P.
    Liu, W.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (03) : 441 - 452
  • [9] On asymptotic distribution of prediction in functional linear regression
    Khademnoe, Omid
    Hosseini-Nasab, S. Mohammad E.
    STATISTICS, 2016, 50 (05) : 974 - 990
  • [10] Confidence intervals in a regression with both linear and non-linear terms
    Davies, Robert
    Withers, Christopher
    Nadarajah, Saralees
    ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 603 - 618