Partial Hölder regularity for asymptotically convex functionals with borderline double-phase growth

被引:0
作者
Chang, Wenrui [1 ]
Zheng, Shenzhou [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
asymptotically convex; borderline double-phase functional; log-H & ouml; lder continuous; partial H & ouml; lder regularity; VMO coefficient; LIPSCHITZ REGULARITY; MINIMIZERS; CALCULUS; SYSTEMS;
D O I
10.1002/mana.202400388
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study partial Holder regularity of the local minimizers is an element of(1,1)(loc)(Omega; R)with >= 1 to the integral functional integral(Omega) (,,)in a bounded domain Omega subset of R for >= 2. Under the assumption of asymptotically convex to the borderline double-phase functional integral(Omega) (,)(|| + ()||log( + ||)). where (,) satisfies VMO in and is continuous in, respectively, and()isa strongly log-Holder continuous function, we prove that the local minimizer of such a functional is locally Holder continuous with an explicit Holder exponent in an open set Omega(0) subset of Omega with Hn--(Omega\Omega(0)) = 0 for some small > 0, where H denotes -dimensional Hausdorff measure
引用
收藏
页码:1018 / 1040
页数:23
相关论文
共 35 条
[1]  
Acerbi E., 2005, J. Reine Angew. Math., V2005, p117 148
[2]   C0,α apartial regularity result for elliptic systems with discontinuous coefficients and Orlicz growth [J].
Anceschi, Francesca ;
Isernia, Teresa .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (01)
[3]   NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES [J].
Baroni, P. ;
Colombo, M. ;
Mingione, G. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) :347-379
[4]  
Baroni P, 2022, ELECTRON J DIFFER EQ, V2022
[5]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[6]   C1,α-solutions to non-autonomous anisotropic variational problems [J].
Bildhauer, M ;
Fuchs, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (03) :309-340
[7]   LINEARIZATION AT INFINITY AND LIPSCHITZ ESTIMATES FOR CERTAIN PROBLEMS IN THE CALCULUS OF VARIATIONS [J].
CHIPOT, M ;
EVANS, LC .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1986, 102 :291-303
[9]   Manifold Constrained Non-uniformly Elliptic Problems [J].
De Filippis, Cristiana ;
Mingione, Giuseppe .
JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) :1661-1723
[10]   Everywhere regularity of functionals with φ-growth [J].
Diening, Lars ;
Stroffolini, Bianca ;
Verde, Anna .
MANUSCRIPTA MATHEMATICA, 2009, 129 (04) :449-481