Conflict-Based Model Predictive Control for Scalable Multi-Robot Motion Planning

被引:0
|
作者
Tajbakhsh, Ardalan [1 ]
Biegler, Lorenz T. [2 ]
Johnson, Aaron M. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024) | 2024年
关键词
Multi-robot motion planning; model predictive control; collision avoidance;
D O I
10.1109/ICRA57147.2024.10611078
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a scalable multi-robot motion planning algorithm called Conflict-Based Model Predictive Control (CB-MPC). Inspired by Conflict-Based Search (CBS), the planner leverages a modified high-level conflict tree to efficiently resolve robot-robot conflicts in the continuous space, while reasoning about each agent's kinematic and dynamic constraints and actuation limits using MPC as the low-level planner. We show that tracking high-level multi-robot plans with a vanilla MPC controller is insufficient, and results in unexpected collisions in tight navigation scenarios under realistic execution. Compared to other variations of multi-robot MPC like joint, prioritized, and distributed, we demonstrate that CB-MPC improves the executability and success rate, allows for closer robot-robot interactions, and scales better with higher numbers of robots without compromising the solution quality across a variety of environments.
引用
收藏
页码:14562 / 14568
页数:7
相关论文
共 50 条
  • [1] Online Trajectory Generation With Distributed Model Predictive Control for Multi-Robot Motion Planning
    Luis, Carlos E.
    Vukosavljev, Marijan
    Schoellig, Angela P.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) : 604 - 611
  • [2] dRRT*: Scalable and informed asymptotically-optimal multi-robot motion planning
    Shome, Rahul
    Solovey, Kiril
    Dobson, Andrew
    Halperin, Dan
    Bekris, Kostas E.
    AUTONOMOUS ROBOTS, 2020, 44 (3-4) : 443 - 467
  • [3] Scalable distributed algorithms for multi-robot near-optimal motion planning
    Zhao, Guoxiang
    Zhu, Minghui
    AUTOMATICA, 2022, 140
  • [4] dRRT*: Scalable and informed asymptotically-optimal multi-robot motion planning
    Rahul Shome
    Kiril Solovey
    Andrew Dobson
    Dan Halperin
    Kostas E. Bekris
    Autonomous Robots, 2020, 44 : 443 - 467
  • [5] Multi-robot Formation Based on Trajectory Design and Model Predictive Control
    Yan, Xiangda
    Xu, Dasheng
    Chen, Yaping
    Lv, Jianming
    Hong, Huajie
    PROCEEDINGS OF 2022 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2022), 2022, : 692 - 697
  • [6] On the hardness of unlabeled multi-robot motion planning
    Solovey, Kiril
    Halperin, Dan
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2016, 35 (14): : 1750 - 1759
  • [7] Distributed Nonlinear Trajectory Optimization for Multi-Robot Motion Planning
    Ferranti, Laura
    Lyons, Lorenzo
    Negenborn, Rudy R.
    Keviczky, Tamas
    Alonso-Mora, Javier
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2023, 31 (02) : 809 - 824
  • [8] Scalable time-constrained planning of multi-robot systems
    Nikou, Alexandros
    Heshmati-alamdari, Shahab
    Dimarogonas, Dimos V.
    AUTONOMOUS ROBOTS, 2020, 44 (08) : 1451 - 1467
  • [9] k-color multi-robot motion planning
    Solovey, Kiril
    Halperin, Dan
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2014, 33 (01): : 82 - 97
  • [10] Distributed Sampling-Based Model Predictive Control via Belief Propagation for Multi-Robot Formation Navigation
    Jiang, Chao
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (04) : 3467 - 3474