High-Performance and Scalable Organosilicon Membranes for Energy-Efficient Alcohol Purification

被引:0
|
作者
Zhu, Tengyang [1 ,2 ]
Shen, Dongchen [3 ]
Dong, Jiayu [1 ,2 ]
Liu, Huan [1 ,2 ]
Xia, Qing [1 ,2 ]
Li, Song [3 ]
Shao, Lu [4 ]
Wang, Yan [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Key Lab Mat Chem Energy Convers & Storage, Minist Educ, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Hubei Key Lab Mat Chem & Serv Failure, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Dept New Energy Sci & Engn, Wuhan 430074, Peoples R China
[4] Harbin Inst Technol, Sch Chem & Chem Engn, State Key Lab Urban Water Resource & Environm, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
alcohol purification; chain flexibility; crosslinking engineering; organosilicon membrane; SEPARATION; FUEL;
D O I
10.1002/adfm.202415386
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The production of bio-alcohol is increasingly gaining international attention due to its potential as a viable alternative to fossil fuels and its ability to mitigate carbon dioxide emissions. However, the cost of bio-alcohol production is almost double that of fossil fuels, primarily because of the low yield of the purification process. Herein, a high-performance and scalable organosilicon membrane with high chain flexibility and controllable crosslinking density is developed for energy-efficient alcohol purification. The synthesized organosilicon membrane achieves an ultrahigh total flux (5.8 kg<middle dot>m-2<middle dot>h-1) with a comparable separation factor (8.7) for ethanol/water separation, outperforming most state-of-the-art polymer-based membranes. Integrated experiments and molecular dynamics simulations confirm that the ultrafast alcohol permeation of the membrane originates from its high chain flexibility, large fractional free volume, and weak interactions between feed molecules and membranes. The universal applicability of the low-crosslinking mechanism for the formation of high-performance organosilicon membranes is also validated. Moreover, its high efficiency and scalability in membrane production, along with the stability of the casting solution, offer promising prospects for industrial applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Energy-Efficient Design Methodologies: High-Performance VLSI Adders
    Zeydel, Bart R.
    Baran, Dursun
    Oklobdzija, Vojin G.
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2010, 45 (06) : 1220 - 1233
  • [22] SPRINT: A High-Performance, Energy-Efficient, and Scalable Chiplet-Based Accelerator With Photonic Interconnects for CNN Inference
    Li, Yuan
    Louri, Ahmed
    Karanth, Avinash
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (10) : 2332 - 2345
  • [23] OPT-GCN: A Unified and Scalable Chiplet-Based Accelerator for High-Performance and Energy-Efficient GCN Computation
    Zhao, Yingnan
    Wang, Ke
    Louri, Ahmed
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2024, 43 (12) : 4827 - 4840
  • [24] Energy-Efficient and High-Performance Software Architecture for Storage Class Memory
    Baek, Seungjae
    Choi, Jongmoo
    Lee, Donghee
    Noh, Sam H.
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2013, 12 (03)
  • [25] Zen: An Energy-Efficient High-Performance x86 Core
    Singh, Teja
    Schaefer, Alex
    Rangarajan, Sundar
    John, Deepesh
    Henrion, Carson
    Schreiber, Russell
    Rodriguez, Miguel
    Kosonocky, Stephen
    Naffziger, Samuel
    Novak, Amy
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2018, 53 (01) : 102 - 114
  • [26] Cooperative Partitioning: Energy-Efficient Cache Partitioning for High-Performance CMPs
    Sundararajan, Karthik T.
    Porpodas, Vasileios
    Jones, Timothy M.
    Topham, Nigel P.
    Franke, Bjoern
    2012 IEEE 18TH INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE COMPUTER ARCHITECTURE (HPCA), 2012, : 311 - 322
  • [27] Hybrid Nonvolatile Disk Cache for Energy-Efficient and High-Performance Systems
    Shi, Liang
    Li, Jianhua
    Xue, Chun Jason
    Zhou, Xuehai
    ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, 2013, 18 (01)
  • [28] Ameba: A High-performance and Energy-efficient Online Video Retrieval System
    Yang, Jin
    Pang, Jianmin
    Yu, Jintao
    Cao, Wei
    2015 1ST IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2015, : 200 - 203
  • [29] Nanowire FET With Corner Spacer for High-Performance, Energy-Efficient Applications
    Sachid, Angada B.
    Lin, Hsiang-Yun
    Hu, Chenming
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (12) : 5181 - 5187
  • [30] TuNao: A High-Performance and Energy-Efficient Reconfigurable Accelerator for Graph Processing
    Zhou, Jinhong
    Liu, Shaoli
    Guo, Qi
    Zhou, Xuda
    Zhi, Tian
    Liu, Daofu
    Wang, Chao
    Zhou, Xuehai
    Chen, Yunji
    Chen, Tianshi
    2017 17TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2017, : 731 - 734