共 103 条
- [91] Vanguri N.Y., Pazhanirajan S., Kumar T.A., Extraction of technical indicators and data augmentation-based stock market prediction using deep LSTM integrated competitive swarm feedback algorithm, Int. J. Inf. Technol. Decis. Making, 2023, pp. 1-27, (2023)
- [92] Gajamannage K., Park Y., Jayathilake D.I., Real-time forecasting of time series in financial markets using sequentially trained dual-LSTMs, Expert Syst. Appl., 223, (2023)
- [93] Liang C., Luo Q., Li Y., Huynh L.D.T., Global financial stress index and long-term volatility forecast for international stock markets, J. Int. Financial Markets, Inst. Money, 88, (2023)
- [94] Fischer T., Krauss C., Deep learning with long short-term memory networks for financial market predictions, Eur. J. Oper. Res., 270, 2, pp. 654-669, (2018)
- [95] Huang K.J., DeepValue: A comparable framework for valuebased strategy by machine learning, Comput. Econ., 60, 1, pp. 325-346, (2022)
- [96] Banik S., Sharma N., Mangla M., Mohanty S.N., Shitharth S., LSTM based decision support system for swing trading in stock market, Knowl.-Based Syst., 239, (2022)
- [97] Yildirim D.C., Toroslu I.H., Fiore U., Forecasting directional movement of forex data using LSTM with technical and macroeconomic indicators, Financial Innov., 7, 1, pp. 1-36, (2021)
- [98] Sang C., Di Pierro M., Improving trading technical analysis with tensorflow long short-term memory (LSTM) neural network, J. Finance Data Sci., 5, 1, pp. 1-11, (2019)
- [99] Alghamdi M.A., Al-Ghamdi A.S.A.-M., Ragab M., Predicting energy consumption using stacked LSTM snapshot ensemble, Big Data Mining Anal., 7, 2, pp. 247-270, (2024)
- [100] Chen N., Tu H., Duan X., Hu L., Guo C., Semisupervised anomaly detection of multivariate time series based on a variational autoencoder, Int. J. Speech Technol., 53, 5, pp. 6074-6098, (2022)