Semi-supervised distribution learning

被引:0
作者
Wen, Mengtao [1 ]
Jia, Yinxu [1 ]
Ren, Haojie [2 ]
Wang, Zhaojun [1 ]
Zou, Changliang [1 ]
机构
[1] Nankai Univ, Sch Stat & Data Sci, 94 Weijin Rd, Tianjin 300071, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotic Gaussian process; Bias correction; Distributional regression; Functional delta theorem; Semi-supervised distribution test;
D O I
10.1093/biomet/asae056
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study addresses the challenge of distribution estimation and inference in a semi-supervised setting. In contrast to prior research focusing on parameter inference, this work explores the complexities of semi-supervised distribution estimation, particularly the uniformity problem inherent in functional processes. To tackle this issue, we introduce a versatile framework designed to extract valuable information from unlabelled data by approximating a conditional distribution on covariates. The proposed estimator is derived using K-fold cross-fitting, and exhibits both consistency and asymptotic Gaussian process properties. Under mild conditions, the proposed estimator outperforms the empirical cumulative distribution function in terms of asymptotic efficiency. Several applications of the methodology are given, including parameter inference and goodness-of-fit tests.
引用
收藏
页数:8
相关论文
共 21 条
[1]   Prediction-powered inference [J].
Angelopoulos, Anastasios N. ;
Bates, Stephen ;
Fannjiang, Clara ;
Jordan, Michael I. ;
Zrnic, Tijana .
SCIENCE, 2023, 382 (6671) :669-674
[2]  
Chakrabortty A., 2024, ARXIV
[3]   Improving point and interval estimators of monotone functions by rearrangement [J].
Chernozhukov, V. ;
Fernandez-Val, I. ;
Galichon, A. .
BIOMETRIKA, 2009, 96 (03) :559-575
[4]   Double/debiased machine learning for treatment and structural parameters [J].
Chernozhukov, Victor ;
Chetverikov, Denis ;
Demirer, Mert ;
Duflo, Esther ;
Hansen, Christian ;
Newey, Whitney ;
Robins, James .
ECONOMETRICS JOURNAL, 2018, 21 (01) :C1-C68
[5]   Quantile and Probability Curves Without Crossing [J].
Chernozhukov, Victor ;
Fernandez-Val, Ivan ;
Galichon, Alfred .
ECONOMETRICA, 2010, 78 (03) :1093-1125
[6]   NONPARAMETRIC CONDITIONAL LOCAL INDEPENDENCE TESTING [J].
Christgau, Alexander Mangulad ;
Petersen, Lasse ;
Hansen, Niels richard .
ANNALS OF STATISTICS, 2023, 51 (05) :2116-2144
[7]   JUSTIFICATION AND EXTENSION OF DOOBS HEURISTIC APPROACH TO THE KOLMOGOROV-SMIRNOV THEOREMS [J].
DONSKER, MD .
ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (02) :277-281
[8]   ASYMPTOTIC MINIMAX CHARACTER OF THE SAMPLE DISTRIBUTION FUNCTION AND OF THE CLASSICAL MULTINOMIAL ESTIMATOR [J].
DVORETZKY, A ;
KIEFER, J ;
WOLFOWITZ, J .
ANNALS OF MATHEMATICAL STATISTICS, 1956, 27 (03) :642-669
[9]  
evid D., 2022, J MACH LEARN RES, V23, P1, DOI [DOI 10.48550/ARXIV.2005.14458, 10.48550/arXiv.2005.14458]
[10]   Approximating conditional distribution functions using dimension reduction [J].
Hall, P ;
Yao, QW .
ANNALS OF STATISTICS, 2005, 33 (03) :1404-1421