MULTITURNCLEANUP: A Benchmark for Multi-Turn Spoken Conversational Transcript Cleanup

被引:0
|
作者
Shen, Hua [1 ,2 ]
Zayats, Vicky [2 ]
Rocholl, Johann C. [2 ]
Walker, Daniel D. [2 ]
Padfield, Dirk [2 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Google Res, Mountain View, CA 94043 USA
来源
2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2023) | 2023年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Current disfluency detection models focus on individual utterances each from a single speaker. However, numerous discontinuity phenomena in spoken conversational transcripts occur across multiple turns, which can not be identified by disfluency detection models. This study addresses these phenomena by proposing an innovative Multi-Turn Cleanup task for spoken conversational transcripts and collecting a new dataset, MultiTurnCleanup(1). We design a data labeling schema to collect the high-quality dataset and provide extensive data analysis. Furthermore, we leverage two modeling approaches for experimental evaluation as benchmarks for future research.
引用
收藏
页码:9895 / 9903
页数:9
相关论文
共 50 条
  • [31] Capture Salient Historical Information: A Fast and Accurate Non-autoregressive Model for Multi-turn Spoken Language Understanding
    Cheng, Lizhi
    Jia, Weijia
    Yang, Wenmian
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2023, 41 (02)
  • [32] Multi-Turn Dialogue Agent as Sales' Assistant in Telemarketing
    Gao, Wanting
    Gao, Xinyi
    Tang, Yin
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [33] Modeling Topical Relevance for Multi-Turn Dialogue Generation
    Zhang, Hainan
    Lan, Yanyan
    Pang, Liang
    Chen, Hongshen
    Ding, Zhuoye
    Yin, Dawei
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 3737 - 3743
  • [34] Transmission characteristic of multi-turn microfiber coil resonator
    Jasim, A. A.
    Lim, K. S.
    Muhammad, M. Z.
    Arof, H.
    Ahmad, H.
    Harun, S. W.
    OPTICS AND LASER TECHNOLOGY, 2012, 44 (06): : 1791 - 1795
  • [35] Optimization of the multi-turn injection efficiency for a medical synchrotron
    J. Kim
    M. Yoon
    H. Yim
    Journal of the Korean Physical Society, 2016, 69 : 927 - 932
  • [36] Modular Multi-Turn Gear Angular Position Encoder
    V. A. Mozzhechkov
    Measurement Techniques, 2019, 62 : 608 - 614
  • [37] Visual Dialog with Multi-turn Attentional Memory Network
    Kong, Dejiang
    Wu, Fei
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT I, 2018, 11164 : 611 - 621
  • [38] Incorporating emotion for response generation in multi-turn dialogues
    Mao, Yanying
    Cai, Fei
    Guo, Yupu
    Chen, Honghui
    APPLIED INTELLIGENCE, 2022, 52 (07) : 7218 - 7229
  • [39] Multi-turn all-reflective optical gyroscope
    Cole, ST
    Fork, RL
    Lamb, DJ
    Reardon, PJ
    OPTICS EXPRESS, 2000, 7 (08): : 285 - 291
  • [40] Optimization of the multi-turn injection efficiency for a medical synchrotron
    Kim, J.
    Yoon, M.
    Yim, H.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2016, 69 (06) : 927 - 932