Computer Vision Identification of Trachomatous Inflammation-Follicular Using Deep Learning

被引:1
|
作者
Joye, Ashlin S. [1 ,2 ]
Firlie, Marissa G. [3 ]
Wittberg, Dionna M. [2 ]
Aragie, Solomon [4 ]
Nash, Scott D. [5 ]
Tadesse, Zerihun [4 ]
Dagnew, Adane [4 ]
Hailu, Dagnachew [4 ]
Admassu, Fisseha [6 ]
Wondimteka, Bilen [6 ]
Getachew, Habib [6 ]
Kabtu, Endale [6 ]
Beyecha, Social [6 ]
Shibiru, Meskerem [6 ]
Getnet, Banchalem [6 ]
Birhanu, Tibebe [6 ]
Abdu, Seid [6 ]
Tekew, Solomon [6 ]
Lietman, Thomas M. [2 ]
Keenan, Jeremy D. [2 ]
Redd, Travis K. [1 ,2 ]
机构
[1] Oregon Hlth & Sci Univ, Casey Eye Inst, 515 SW Campus Dr, Portland, OR 97239 USA
[2] Univ Calif San Francisco, Francis I Proctor Fdn, San Francisco, CA USA
[3] George Washington Univ, Sch Med & Hlth Sci, Washington, DC USA
[4] Carter Ctr Ethiopia, Addis Ababa, Ethiopia
[5] Carter Ctr, Atlanta, GA USA
[6] Univ Gondar, Dept Ophthalmol, Gondar, Ethiopia
关键词
trachoma; artificial intelligence; deep learning; computer vision; ophthalmology; SYSTEM;
D O I
10.1097/ICO.0000000000003701
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose:Trachoma surveys are used to estimate the prevalence of trachomatous inflammation-follicular (TF) to guide mass antibiotic distribution. These surveys currently rely on human graders, introducing a significant resource burden and potential for human error. This study describes the development and evaluation of machine learning models intended to reduce cost and improve reliability of these surveys.Methods:Fifty-six thousand seven hundred twenty-five everted eyelid photographs were obtained from 11,358 children of age 0 to 9 years in a single trachoma-endemic region of Ethiopia over a 3-year period. Expert graders reviewed all images from each examination to determine the estimated number of tarsal conjunctival follicles and the degree of trachomatous inflammation-intense. The median estimate of the 3 grader groups was used as the ground truth to train a MobileNetV3 large deep convolutional neural network to detect cases with TF.Results:The classification model predicted a TF prevalence of 32%, which was not significantly different from the human consensus estimate (30%; 95% confidence interval of difference, -2 to +4%). The model had an area under the receiver operating characteristic curve of 0.943, F1 score of 0.923, 88% accuracy, 83% sensitivity, and 91% specificity. The area under the receiver operating characteristic curve increased to 0.995 when interpreting nonborderline cases of TF.Conclusions:Deep convolutional neural network models performed well at classifying TF and detecting the number of follicles evident in conjunctival photographs. Implementation of similar models may enable accurate, efficient, large-scale trachoma screening. Further validation in diverse populations with varying TF prevalence is needed before implementation at scale.
引用
收藏
页码:613 / 618
页数:6
相关论文
共 50 条
  • [1] Optimizing cluster survey designs for estimating trachomatous inflammation-follicular within trachoma control programs
    Gallini, Julia W.
    Sata, Eshetu
    Zerihun, Mulat
    Melak, Berhanu
    Haile, Mahteme
    Zeru, Taye
    Gessese, Demelash
    Ayele, Zebene
    Tadesse, Zerihun
    Callahan, E. Kelly
    Nash, Scott D.
    Weiss, Paul S.
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2022, 116 : 101 - 107
  • [2] High prevalence of trachomatous inflammation-follicular with no trachomatous trichiasis: can alternative indicators explain the epidemiology of trachoma in Cote d'Ivoire?
    Atekem, Kareen
    Harding-Esch, Emma M.
    Martin, Diana L.
    Downs, Philip
    Palmer, Stephanie L.
    Kabore, Achille
    Kelly, Michaela
    Bovary, Anoma
    Sarr, Astou
    Nguessan, Konan
    James, Fiona
    Gwyn, Sarah
    Wickens, Karana
    Bakhtiari, Ana
    Boyd, Sarah
    Aba, Ange
    Senyonjo, Laura
    Courtright, Paul
    Meite, Aboulaye
    INTERNATIONAL HEALTH, 2023, 15 : ii3 - ii11
  • [3] A robust bridge rivet identification method using deep learning and computer vision
    Jiang, Tengjiao
    Froseth, Gunnstein Thomas
    Ronnquist, Anders
    ENGINEERING STRUCTURES, 2023, 283
  • [4] Applications and Challenges of Deep Learning in Computer Vision
    Singh, Chetanpal
    HEALTH INFORMATION SCIENCE, HIS 2021, 2021, 13079 : 223 - 233
  • [5] Automated identification of aquatic insects: A case study using deep learning and computer vision techniques
    Simovic, Predrag
    Milosavljevic, Aleksandar
    Stojanovic, Katarina
    Radenkovic, Milena
    Savic-Zdravkovic, Dimitrija
    Predic, Bratislav
    Petrovic, Ana
    Bozanic, Milenka
    Milosevic, Djuradj
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 935
  • [6] Deep learning computer vision algorithm for detecting kidney stone composition
    Black, Kristian M.
    Law, Hei
    Aldoukhi, Ali
    Deng, Jia
    Ghani, Khurshid R.
    BJU INTERNATIONAL, 2020, 125 (06) : 920 - 924
  • [7] Automated corrosion detection using deep learning and computer vision
    Nabizadeh E.
    Parghi A.
    Asian Journal of Civil Engineering, 2023, 24 (8) : 2911 - 2923
  • [8] Bridge influence surface identification using a deep multilayer perceptron and computer vision techniques
    Jian, Xudong
    Xia, Ye
    Chatzi, Eleni
    Lai, Zhilu
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024, 23 (03): : 1606 - 1626
  • [9] Deep Learning for Assistive Computer Vision
    Leo, Marco
    Furnari, Antonino
    Medioni, Gerard G.
    Trivedi, Mohan
    Farinella, Giovanni M.
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT VI, 2019, 11134 : 3 - 14
  • [10] Identification and measurement of tropical tuna species in purse seiner catches using computer vision and deep learning
    Lekunberri, Xabier
    Ruiz, Jon
    Quincoces, Inaki
    Dornaika, Fadi
    Arganda-Carreras, Ignacio
    Fernandes, Jose A.
    ECOLOGICAL INFORMATICS, 2022, 67