Quantifying the Impact of Climate Change and Human Activities on Multiobjective Water Resource Management in the Hanjiang River Basin, China

被引:0
作者
Yang, Na [1 ,2 ]
Zhang, Li [2 ]
Yu, Hang [2 ]
Gao, Junjie [2 ]
Zhang, Hairong
Xu, Yinshan [3 ]
Wan, Xiaoling [4 ]
机构
[1] China Yangtze Power Co Ltd, Hubei Key Lab Intelligent Yangtze & Hydroelect Sci, Yichang 443000, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Coll Hydrometeorol, Nanjing 210044, Peoples R China
[3] Changjiang Water Resources Commiss, Bur Hydrol, Wuhan 430010, Peoples R China
[4] Jiangsu Prov Hydrol & Water Resources Invest Bur, Water Resources Sect, Nanjing 210029, Peoples R China
关键词
Climate change; Runoff simulation; Reservoir operation; Hanjiang River Basin; OPERATION; STREAMFLOW; LAND; VARIABILITY; RESERVOIRS; RUNOFF; FLOWS; MODEL;
D O I
10.1061/JWRMD5.WRENG-6533
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The water resources system is at risk of water deficit due to climate change and significant agricultural and industrial development. Comprehensively quantifying the impact of climate change or human activities on water resources allocation is crucial in order for reservoir managers to understand potential risks. A two-parameter hydrological model and a multiobjective reservoir operation model were used in this study to understand the impacts of climate change and human activities on runoff and water resources management in the Hanjiang River Basin. We compared the measured runoff in the prechange period (1960-1989) with the simulated runoff obtained from the hydrological model in the postchange period (1990-2019). The results showed that human activities contributed to 79% of the runoff reduction, and climate change accounted for 21%. Seasonal contribution analysis indicated that human activities were the dominant reason for the runoff reduction, whereas climate change was primarily responsible for altered seasonal runoff patterns. A multiobjective reservoir operation model was established based on the actual runoff and the model-based runoff. The results showed that the impact of human activities had a more significant impact than climate change on the downstream water supply dispatching for human needs and irrigation. Its contribution rates increased to 88% and 83%, respectively. Climate change had a more significant impact on power generation, with its contribution rate increasing to 70%. By analyzing the dispatching process, it was found that climate change reduced the stability of monthly water level processes, leading to a decrease in the guarantee rate of water supply and power generation. Water diversion projects substantially reduced the available water volume and increased the risk of water deficit. It is recommended that the operation rules of the reservoir should be adjusted to adapt to the altered runoff patterns and water consumption patterns.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Impacts of climate change and human activities on water resources in the Ebinur Lake Basin, Northwest China
    Wang, Yuejian
    Gu, Xinchen
    Yang, Guang
    Yao, Junqiang
    Liao, Na
    JOURNAL OF ARID LAND, 2021, 13 (06) : 581 - 598
  • [42] Identification of Streamflow Response to Climate Change and Human Activities in the Wei River Basin, China
    Depeng Zuo
    Zongxue Xu
    Wei Wu
    Jie Zhao
    Fangfang Zhao
    Water Resources Management, 2014, 28 : 833 - 851
  • [43] Quantifying the Impacts of Climate Change and Human Activities on Runoff in the Upper Yongding River Basin
    Yang, Yiyang
    Cai, Siyu
    Sun, Xiangyu
    Wang, Hao
    JOURNAL OF HYDROLOGIC ENGINEERING, 2025, 30 (02)
  • [44] The impact of climate change and human activities on streamflow and sediment load in the Pearl River basin
    Chuangshou Wu
    Changchen Ji
    Benwei Shi
    Yaping Wang
    Jianhua Gao
    Yang Yang
    Jinbin Mu
    InternationalJournalofSedimentResearch, 2019, 34 (04) : 307 - 321
  • [45] Water scarcity in the Yellow River Basin under future climate change and human activities
    Omer, Abubaker
    Elagib, Nadir Ahmed
    Ma Zhuguo
    Saleem, Farhan
    Mohammed, Alnail
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 749
  • [46] Systematic impact assessment on inter-basin water transfer projects of the Hanjiang River Basin in China
    Zhou, Yanlai
    Guo, Shenglian
    Hong, Xingjun
    Chang, Fi-John
    JOURNAL OF HYDROLOGY, 2017, 553 : 584 - 595
  • [47] Impact of Climate Change on Water Resources of the Bheri River Basin, Nepal
    Mishra, Yogendra
    Nakamura, Tai
    Babel, Mukand Singh
    Ninsawat, Sarawut
    Ochi, Shiro
    WATER, 2018, 10 (02)
  • [48] Impact of climate change on water availability in Marsyangdi river basin, Nepal
    Mudbhari, Dipak
    Kansal, Mitthan Lal
    Kalura, Praveen
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2022, 148 (744) : 1407 - 1423
  • [49] Effects of climate change and anthropogenic activities on runoff change of the Weihe River basin, Northwest China
    Wu, Changxue
    Xie, Jian
    Qiu, Dexun
    Xie, Zhibo
    Gao, Peng
    Mu, Xingmin
    RIVER RESEARCH AND APPLICATIONS, 2023, 39 (04) : 648 - 660
  • [50] Quantifying the Impacts of Climate Change and Human Activities on Runoff in the Lancang River Basin Based on the Budyko Hypothesis
    Liu, Hao
    Wang, Zheng
    Ji, Guangxing
    Yue, Yanlin
    WATER, 2020, 12 (12) : 1 - 11