Recent Progress of Covalent Organic Frameworks-Based Materials Used for CO2 Electrocatalytic Reduction: A Review

被引:0
|
作者
Cui, Heng-fei [1 ]
Yang, Feng [1 ]
Liu, Cong [1 ]
Zhu, Hao-wen [1 ]
Liu, Ming-yang [1 ]
Guo, Rui-tang [1 ,2 ]
机构
[1] Shanghai Univ Elect Power, Coll Energy Source & Mech Engn, Shanghai 200090, Peoples R China
[2] Shanghai Noncarbon Energy Convers & Utilizat Inst, Shanghai 200090, Peoples R China
关键词
carbon dioxide reduction; COF; electrocatalysis; synthesis techniques; topological structures; MESOPOROUS SNO2 NANOSHEETS; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; DESIGNED SYNTHESIS; RATIONAL DESIGN; ELECTROREDUCTION; CONSTRUCTION; SITES;
D O I
10.1002/smll.202502867
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The excessive CO2 emissions from human activities severely impact the natural environment and ecosystems. Among the various technologies available, electrocatalytic CO2 reduction is regarded as one of the most promising routes due to its exceptional environmental friendliness and sustainability. Covalent organic frameworks (COFs) are crystalline, porous organic networks that are formed through thermodynamically controlled reversible covalent polymerization of organic linkers via covalent bonding. These materials exhibit high porosity, large surface area, excellent chemical and thermal stability, sustainability, high electron transfer efficiency, and surface functionalization capabilities, making them particularly effective in electrocatalytic CO2 reduction. First, this review briefly introduces the fundamental principles of electrocatalysis and the mechanism of electrocatalytic CO2 reduction. Next, it discusses the composition, structure, and synthesis methods of COF-based materials, as well as their applications in electrocatalytic CO2 reduction. Furthermore, it reviews the research progress in this field from the perspective of different types of COF-based catalysts. Finally, in light of the current research status, the development prospects of COF-based catalysts are explored, providing a reference for the development of more efficient and stable COF electrocatalysts for CO2 reduction.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Covalent Organic Frameworks-based Nanocomposites for Oxygen reduction reaction
    Sharma, Vivek
    Das, Dipak Kumar
    Vashistha, Vinod Kumar
    Gupta, Ram K.
    Yasin, Ghulam
    Kumar, Anuj
    JOURNAL OF INCLUSION PHENOMENA AND MACROCYCLIC CHEMISTRY, 2022, 102 (5-6) : 477 - 485
  • [22] Covalent Organic Frameworks-based Nanocomposites for Oxygen reduction reaction
    Vivek Sharma
    Dipak Kumar Das
    Vinod Kumar Vashistha
    Ram K. Gupta
    Ghulam Yasin
    Anuj Kumar
    Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2022, 102 : 477 - 485
  • [23] Covalent Organic Frameworks for Photocatalytic CO2 Reduction
    Liu, Yvfei
    Zhang, Mi
    Lu, Meng
    Lan, Yaqian
    PROGRESS IN CHEMISTRY, 2023, 35 (03) : 349 - 359
  • [24] Progress in the design of silver-based catalysts for electrocatalytic and photocatalytic CO2 reduction to CO
    Wei, Shuoming
    Deng, Yang
    Xu, Xinru
    Jiang, Xiao
    Liu, Bingsi
    Zhao, Chao
    Zhang, Zhen
    APPLIED CATALYSIS O: OPEN, 2024, 188
  • [25] Unveiling the Electrocatalytic Activity of Metallophthalocyanine-Based Covalent Organic Frameworks Toward CO2 Reduction Reaction
    Parveen, Kahkasha
    Pakhira, Srimanta
    JOURNAL OF PHYSICAL CHEMISTRY C, 2025, 129 (06) : 2973 - 2987
  • [26] Progress of electrocatalytic reduction of CO2 on metal-based materials
    Su W.
    Fan Y.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40 (03): : 1384 - 1394
  • [27] Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis
    Xuan Cui-Juan
    Wang Jie
    Zhu Jing
    Wang De-Li
    ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (01) : 149 - 164
  • [28] CO2 Hydrogenation on Metal-Organic Frameworks-Based Catalysts: A Mini Review
    Zhang, Qian
    Wang, Sen
    Dong, Mei
    Fan, Weibin
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [29] Metal-organic frameworks based materials for photocatalytic CO2 reduction
    Crake, Angus
    MATERIALS SCIENCE AND TECHNOLOGY, 2017, 33 (15) : 1737 - 1749
  • [30] Covalent Organic Frameworks for the Capture, Fixation, or Reduction of CO2
    Ozdemir, John
    Mosleh, Imann
    Abolhassani, Mojtaba
    Greenlee, Lauren F.
    Beitle, Robert R., Jr.
    Beyzavi, M. Hassan
    FRONTIERS IN ENERGY RESEARCH, 2019, 7