Challenges in data-driven geospatial modeling for environmental research and practice

被引:3
作者
Koldasbayeva, Diana [1 ]
Tregubova, Polina [1 ]
Gasanov, Mikhail [1 ]
Zaytsev, Alexey [1 ,2 ]
Petrovskaia, Anna [1 ]
Burnaev, Evgeny [1 ,3 ]
机构
[1] Skolkovo Inst Sci & Technol, Moscow, Russia
[2] Yanqi Lake Beijing Inst Math Sci & Applicat BIMSA, Beijing, Peoples R China
[3] Autonomous Nonprofit Org, Artificial Intelligence Res Inst AIRI, Moscow, Russia
关键词
SPATIAL AUTOCORRELATION; IMBALANCED DATA; DATA AUGMENTATION; UNCERTAINTY; CLASSIFICATION; SYSTEM; SMOTE; PERFORMANCE; DESIGN;
D O I
10.1038/s41467-024-55240-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Machine learning-based geospatial applications offer unique opportunities for environmental monitoring due to domains and scales adaptability and computational efficiency. However, the specificity of environmental data introduces biases in straightforward implementations. We identify a streamlined pipeline to enhance model accuracy, addressing issues like imbalanced data, spatial autocorrelation, prediction errors, and the nuances of model generalization and uncertainty estimation. We examine tools and techniques for overcoming these obstacles and provide insights into future geospatial AI developments. A big picture of the field is completed from advances in data processing in general, including the demands of industry-related solutions relevant to outcomes of applied sciences.
引用
收藏
页数:16
相关论文
共 201 条
  • [71] Japkowicz N, 2011, Evaluating learning algorithms: a classification perspective, DOI [10.1017/CBO9780511921803, DOI 10.1017/CBO9780511921803]
  • [72] Adapting machine learning for environmental spatial data - A review
    Jemeljanova, Marta
    Kmoch, Alexander
    Uuemaa, Evelyn
    [J]. ECOLOGICAL INFORMATICS, 2024, 81
  • [73] Essential biodiversity variables for mapping and monitoring species populations
    Jetz, Walter
    McGeoch, Melodic A.
    Guralnick, Robert
    Ferrier, Simon
    Beck, Jan
    Costello, Markj
    Fernandez, Miguel
    Geller, Gary N.
    Keil, Petr
    Merow, Cory
    Meyer, Carsten
    Muller-Karger, Frank E.
    Pereira, Henrique M.
    Regan, Eugenie C.
    Schmeller, Dirk S.
    Turak, Eren
    [J]. NATURE ECOLOGY & EVOLUTION, 2019, 3 (04) : 539 - 551
  • [74] Improved stratified sampling strategy for estimating mean soil moisture based on auxiliary variable spatial autocorrelation
    Jin, Jianhua
    Zhang, Baozhong
    Mao, Xiaomin
    [J]. SOIL & TILLAGE RESEARCH, 2022, 215
  • [75] Juho Lee, 2020, Adv Neural Inf Process Syst, V33, P6606
  • [76] Aligning artificial intelligence with climate change mitigation
    Kaack, Lynn H.
    Donti, Priya L.
    Strubell, Emma
    Kamiya, George
    Creutzig, Felix
    Rolnick, David
    [J]. NATURE CLIMATE CHANGE, 2022, 12 (06) : 518 - 527
  • [77] A random forest classifier with cost-sensitive learning to extract urban landmarks from an imbalanced dataset
    Kang, Mengjun
    Liu, Yue
    Wang, Mengqi
    Li, Lin
    Weng, Min
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2022, 36 (03) : 496 - 513
  • [78] Spatial dependence between training and test sets: another pitfall of classification accuracy assessment in remote sensing
    Karasiak, N.
    Dejoux, J. -F.
    Monteil, C.
    Sheeren, D.
    [J]. MACHINE LEARNING, 2022, 111 (07) : 2715 - 2740
  • [79] Application of Machine Learning to Model Wetland Inundation Patterns Across a Large Semiarid Floodplain
    Karimi, Sara Shaeri
    Saintilan, Neil
    Wen, Li
    Valavi, Roozbeh
    [J]. WATER RESOURCES RESEARCH, 2019, 55 (11) : 8765 - 8778
  • [80] Physics-informed machine learning
    Karniadakis, George Em
    Kevrekidis, Ioannis G.
    Lu, Lu
    Perdikaris, Paris
    Wang, Sifan
    Yang, Liu
    [J]. NATURE REVIEWS PHYSICS, 2021, 3 (06) : 422 - 440