Challenges in data-driven geospatial modeling for environmental research and practice

被引:3
作者
Koldasbayeva, Diana [1 ]
Tregubova, Polina [1 ]
Gasanov, Mikhail [1 ]
Zaytsev, Alexey [1 ,2 ]
Petrovskaia, Anna [1 ]
Burnaev, Evgeny [1 ,3 ]
机构
[1] Skolkovo Inst Sci & Technol, Moscow, Russia
[2] Yanqi Lake Beijing Inst Math Sci & Applicat BIMSA, Beijing, Peoples R China
[3] Autonomous Nonprofit Org, Artificial Intelligence Res Inst AIRI, Moscow, Russia
关键词
SPATIAL AUTOCORRELATION; IMBALANCED DATA; DATA AUGMENTATION; UNCERTAINTY; CLASSIFICATION; SYSTEM; SMOTE; PERFORMANCE; DESIGN;
D O I
10.1038/s41467-024-55240-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Machine learning-based geospatial applications offer unique opportunities for environmental monitoring due to domains and scales adaptability and computational efficiency. However, the specificity of environmental data introduces biases in straightforward implementations. We identify a streamlined pipeline to enhance model accuracy, addressing issues like imbalanced data, spatial autocorrelation, prediction errors, and the nuances of model generalization and uncertainty estimation. We examine tools and techniques for overcoming these obstacles and provide insights into future geospatial AI developments. A big picture of the field is completed from advances in data processing in general, including the demands of industry-related solutions relevant to outcomes of applied sciences.
引用
收藏
页数:16
相关论文
共 201 条
  • [41] Exploratory spatial analysis for interval data: A new autocorrelation index with COVID-19 and rent price applications
    Freitas, Wanessa W. L.
    de Souza, Renata M. C. R.
    Amaral, Getulio J. A.
    De Bastiani, Fernanda
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 195
  • [42] Frey J., 2022, ISPRS Open J. Photogramm. Remote Sens., V5, DOI DOI 10.1016/J.OPHOTO.2022.100018
  • [43] A Survey on Concept Drift Adaptation
    Gama, Joao
    Zliobaite, Indre
    Bifet, Albert
    Pechenizkiy, Mykola
    Bouchachia, Abdelhamid
    [J]. ACM COMPUTING SURVEYS, 2014, 46 (04)
  • [44] Gao Z., 2022, P ADV NEUR INF PROC, V35, P25390
  • [45] Gaspard Guetchine, 2019, Journal of Ecology and Environment, V43, P19, DOI 10.1186/s41610-019-0118-3
  • [46] Image Style Transfer Using Convolutional Neural Networks
    Gatys, Leon A.
    Ecker, Alexander S.
    Bethge, Matthias
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2414 - 2423
  • [47] GBIF.org, 2024, ABOUT US
  • [48] Mapping opportunities
    Gewin V.
    [J]. Nature, 2004, 427 (6972) : 376 - 377
  • [49] Mapping wind erosion hazard with regression-based machine learning algorithms
    Gholami, Hamid
    Mohammadifar, Aliakbar
    Bui, Dieu Tien
    Collins, Adrian L.
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [50] Multiclass spatial predictions of borehole yield in southern Mali by means of machine learning classifiers
    Gomez-Escalonilla, V
    Diancoumba, O.
    Traore, D. Y.
    Montero, E.
    Martin-Loeches, M.
    Martinez-Santos, P.
    [J]. JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2022, 44