Challenges in data-driven geospatial modeling for environmental research and practice

被引:3
作者
Koldasbayeva, Diana [1 ]
Tregubova, Polina [1 ]
Gasanov, Mikhail [1 ]
Zaytsev, Alexey [1 ,2 ]
Petrovskaia, Anna [1 ]
Burnaev, Evgeny [1 ,3 ]
机构
[1] Skolkovo Inst Sci & Technol, Moscow, Russia
[2] Yanqi Lake Beijing Inst Math Sci & Applicat BIMSA, Beijing, Peoples R China
[3] Autonomous Nonprofit Org, Artificial Intelligence Res Inst AIRI, Moscow, Russia
关键词
SPATIAL AUTOCORRELATION; IMBALANCED DATA; DATA AUGMENTATION; UNCERTAINTY; CLASSIFICATION; SYSTEM; SMOTE; PERFORMANCE; DESIGN;
D O I
10.1038/s41467-024-55240-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Machine learning-based geospatial applications offer unique opportunities for environmental monitoring due to domains and scales adaptability and computational efficiency. However, the specificity of environmental data introduces biases in straightforward implementations. We identify a streamlined pipeline to enhance model accuracy, addressing issues like imbalanced data, spatial autocorrelation, prediction errors, and the nuances of model generalization and uncertainty estimation. We examine tools and techniques for overcoming these obstacles and provide insights into future geospatial AI developments. A big picture of the field is completed from advances in data processing in general, including the demands of industry-related solutions relevant to outcomes of applied sciences.
引用
收藏
页数:16
相关论文
共 201 条
  • [121] Crop type mapping by using transfer learning
    Nowakowski, Artur
    Mrziglod, John
    Spiller, Dario
    Bonifacio, Rogerio
    Ferrari, Irene
    Mathieu, Pierre Philippe
    Garcia-Herranz, Manuel
    Kim, Do-Hyung
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 98
  • [122] A caution regarding rules of thumb for variance inflation factors
    O'Brien, Robert M.
    [J]. QUALITY & QUANTITY, 2007, 41 (05) : 673 - 690
  • [123] Of the Interior, 2021, U. D. Interior Invasive Species Strategic Plan, Fiscal Years 2021-2025
  • [124] Oliver M.A., 2015, Basic steps in geostatistics: The variogram and kriging, V1, P2211, DOI [10.1007/978-3-319-15865-5, DOI 10.1007/978-3-319-15865-5]
  • [125] Mapping hotspots and bundles of forest ecosystem services across the European Union
    Orsi, Francesco
    Ciolli, Marco
    Primmer, Eeva
    Varumo, Liisa
    Geneletti, Davide
    [J]. LAND USE POLICY, 2020, 99
  • [126] Ovadia Y, 2019, ADV NEUR IN, V32
  • [127] OVERTON WS, 1993, COMMUN STAT THEORY, V22, P2641
  • [128] Detection of oil pollution impacts on vegetation using multifrequency SAR, multispectral images with fuzzy forest and random forest methods
    Ozigis, Mohammed S.
    Kaduk, Jorg D.
    Jarvis, Claire H.
    Bispo, Polyanna da Conceicao
    Balzter, Heiko
    [J]. ENVIRONMENTAL POLLUTION, 2020, 256
  • [129] Parliament, 2007, Tech. Rep. 001, P186
  • [130] Inferences with spatial autocorrelation
    Pawley, Matthew David McDonald
    McArdle, Brian H.
    [J]. AUSTRAL ECOLOGY, 2021, 46 (06) : 942 - 949