Challenges in data-driven geospatial modeling for environmental research and practice

被引:3
作者
Koldasbayeva, Diana [1 ]
Tregubova, Polina [1 ]
Gasanov, Mikhail [1 ]
Zaytsev, Alexey [1 ,2 ]
Petrovskaia, Anna [1 ]
Burnaev, Evgeny [1 ,3 ]
机构
[1] Skolkovo Inst Sci & Technol, Moscow, Russia
[2] Yanqi Lake Beijing Inst Math Sci & Applicat BIMSA, Beijing, Peoples R China
[3] Autonomous Nonprofit Org, Artificial Intelligence Res Inst AIRI, Moscow, Russia
关键词
SPATIAL AUTOCORRELATION; IMBALANCED DATA; DATA AUGMENTATION; UNCERTAINTY; CLASSIFICATION; SYSTEM; SMOTE; PERFORMANCE; DESIGN;
D O I
10.1038/s41467-024-55240-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Machine learning-based geospatial applications offer unique opportunities for environmental monitoring due to domains and scales adaptability and computational efficiency. However, the specificity of environmental data introduces biases in straightforward implementations. We identify a streamlined pipeline to enhance model accuracy, addressing issues like imbalanced data, spatial autocorrelation, prediction errors, and the nuances of model generalization and uncertainty estimation. We examine tools and techniques for overcoming these obstacles and provide insights into future geospatial AI developments. A big picture of the field is completed from advances in data processing in general, including the demands of industry-related solutions relevant to outcomes of applied sciences.
引用
收藏
页数:16
相关论文
共 201 条
  • [1] A review of uncertainty quantification in deep learning: Techniques, applications and challenges
    Abdar, Moloud
    Pourpanah, Farhad
    Hussain, Sadiq
    Rezazadegan, Dana
    Liu, Li
    Ghavamzadeh, Mohammad
    Fieguth, Paul
    Cao, Xiaochun
    Khosravi, Abbas
    Acharya, U. Rajendra
    Makarenkov, Vladimir
    Nahavandi, Saeid
    [J]. INFORMATION FUSION, 2021, 76 : 243 - 297
  • [2] A New Integrated Approach for Landslide Data Balancing and Spatial Prediction Based on Generative Adversarial Networks (GAN)
    Al-Najjar, Husam A. H.
    Pradhan, Biswajeet
    Sarkar, Raju
    Beydoun, Ghassan
    Alamri, Abdullah
    [J]. REMOTE SENSING, 2021, 13 (19)
  • [3] Fast Spatial Autocorrelation
    Amgalan, Anar
    Mujica-Parodi, L. R.
    Skiena, Steven S.
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 12 - 21
  • [4] Anderson R. P., 2016, Global Biodivers. Inf. Facil., P1
  • [5] Finding hotspots: development of an adaptive spatial sampling approach
    Andrade-Pacheco, Ricardo
    Rerolle, Francois
    Lemoine, Jean
    Hernandez, Leda
    Meite, Aboulaye
    Juziwelo, Lazarus
    Bibaut, Aurelien F.
    van der Laan, Mark J.
    Arnold, Benjamin F.
    Sturrock, Hugh J. W.
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [6] [Anonymous], 2001, P IJCAI
  • [7] Asami K., 2022, P ISCRAM 2022 C P 19, P7
  • [8] Aswi Aswi, 2021, Journal of Physics: Conference Series, V1899, DOI 10.1088/1742-6596/1899/1/012098
  • [9] Variogram or semivariogram? Understanding the variances in a variogram
    Bachmaier, Martin
    Backes, Matthias
    [J]. PRECISION AGRICULTURE, 2008, 9 (03) : 173 - 175
  • [10] Effective strategies for correcting spatial sampling bias in species distribution models without independent test data
    Baker, David J.
    Maclean, Ilya M. D.
    Gaston, Kevin J.
    [J]. DIVERSITY AND DISTRIBUTIONS, 2024, 30 (03)