ON THE KOBAYASHI METRICS IN RIEMANNIAN MANIFOLDS

被引:0
|
作者
Gaussier, Herve [1 ]
Sukhov, Alexandre [2 ,3 ]
机构
[1] Univ Grenoble Alpes, CNRS, IF, F-38000 Grenoble, France
[2] Univ Lille, Dept Math, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
[3] Russian Acad Sci, Subdiv Ufa Res Ctr, Inst Math, Comp Ctr, Chernyshevsky Str 112, Ufa 45008, Russia
关键词
Riemannian manifolds; conformal harmonic maps; Kobayashi hyperbolocity; BEHAVIOR;
D O I
10.1090/proc/16946
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define the Kobayashi distance and the Kobayashi-Royden infinitesimal metric on any smooth Riemannian manifold (M, g), using conformal harmonic immersions from the unit disk in C into M. We also study their basic properties, following the approach developped by H. L. Royden [Remarks on the Kobayashi metric, Springer, Berlin-New York, 1971] for complex manifolds.
引用
收藏
页码:1993 / 2006
页数:14
相关论文
共 50 条