An alternative approach to inverse Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Z}$$\end{document}-transform of rational functionsAn alternative approach to inverse Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Z}$$\end{document}-transform...M. Vaez et al.

被引:0
|
作者
MohammadJavad Vaez [1 ]
Alireza Hosseini [1 ]
Kamal Jamshidi [2 ]
机构
[1] University of Tehran,School of Mathematics, Statistics, and Computer Science, College of Science
[2] University of Isfahan,Faculty of Computer Engineering
关键词
Cauchy residue calculus; Discrete-time signals; Discrete-time systems; Inverse ; -transform; Partial fraction expansion; Teaching methodology; 93-08; 93C55; 93C62; 94A12;
D O I
10.1007/s10665-025-10437-8
中图分类号
学科分类号
摘要
This paper introduces a novel method for calculating the inverse Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Z}$$\end{document}-transform of rational functions. Unlike some existing approaches that rely on partial fraction expansion and involve dividing by z, the proposed method allows for the direct computation of the inverse Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Z}$$\end{document}-transform without such division. Furthermore, this method expands the rational functions over real numbers instead of complex numbers. Hence, it does not need algebraic manipulations to obtain a real-valued answer. Furthermore, it aligns our method more closely with established techniques used in integral, Laplace, and Fourier transforms. In addition, it can lead to fewer calculations in some cases.
引用
收藏
相关论文
共 17 条