Finite Time Stability Analysis and Feedback Control for Takagi-Sugeno Fuzzy Time Delay Fractional-Order Systems

被引:1
作者
Gassara, Hamdi [1 ]
Tlija, Mehdi [2 ]
Mchiri, Lassaad [3 ]
Ben Makhlouf, Abdellatif [4 ]
机构
[1] Univ Sfax, Natl Sch Engn Sfax, Lab Sci & Tech Automat Control & Comp Engn, PB 1173, Sfax 3038, Tunisia
[2] King Saud Univ, Coll Engn, Dept Ind Engn, POB 800, Riyadh 11421, Saudi Arabia
[3] Pantheon Assas Univ Paris II, Dept Math, 92 Rue Assas, F-75006 Paris, France
[4] Sfax Univ, Fac Sci, Dept Math, BP 1171, Sfax 3000, Tunisia
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 10期
关键词
tempered fractional derivative; LMI approach; finite time stability analysis; time delay system; H-INFINITY CONTROL;
D O I
10.3390/sym16101344
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study treats the problem of Finite Time Stability Analysis (FTSA) and Finite Time Feedback Control (FTFC), using a Linear Matrix Inequalities Approach (LMIA). It specifically focuses on Takagi-Sugeno fuzzy Time Delay Fractional-Order Systems (TDFOS) that include nonlinear perturbations and interval Time Varying Delays (ITVDs). We consider the case of the Caputo Tempered Fractional Derivative (CTFD), which generalizes the Caputo Fractional Derivative (CFD). Two main results are presented: a two-step procedure is provided, followed by a more relaxed single-step procedure. Two examples are presented to show the reduction in conservatism achieved by the proposed methods. The first is a numerical example, while the second involves the FTFC of an inverted pendulum, which exhibits both symmetrical dynamics for small angular displacements and asymmetrical dynamics for larger deviations.
引用
收藏
页数:13
相关论文
共 24 条
[1]   A novel finite time stability analysis of nonlinear fractional-order time delay systems: A fixed point approach [J].
Ben Makhlouf, Abdellatif .
ASIAN JOURNAL OF CONTROL, 2022, 24 (06) :3580-3587
[2]   Partial practical stability for fractional-order nonlinear systems [J].
Ben Makhlouf, Abdellatif .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (09) :5135-5148
[3]   Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach [J].
Cao, YY ;
Frank, PM .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2000, 8 (02) :200-211
[4]   Stability and Stabilization of Fractional-Order Uncertain Nonlinear Systems With Multiorder [J].
Chen, Liping ;
Guo, Wenliang ;
Gu, Panpan ;
Lopes, Antonio M. M. ;
Chu, Zhaobi ;
Chen, YangQuan .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (02) :576-580
[5]   Asymptotic Stability of Fractional-Order Incommensurate Neural Networks [J].
Chen, Liping ;
Gu, Panpan ;
Lopes, Antonio M. ;
Chai, Yi ;
Xu, Shuiqing ;
Ge, Suoliang .
NEURAL PROCESSING LETTERS, 2023, 55 (05) :5499-5513
[6]   Stability for Caputo Fractional Differential Systems [J].
Choi, Sung Kyu ;
Kang, Bowon ;
Koo, Namjip .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[7]   Tempered Mittag-Leffler Stability of Tempered Fractional Dynamical Systems [J].
Deng, Jingwei ;
Ma, Weiyuan ;
Deng, Kaiying ;
Li, Yingxing .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
[8]   Observer-Based Robust H∞ Reliable Control for Uncertain T-S Fuzzy Systems With State Time Delay [J].
Gassara, Hamdi ;
El Hajjaji, Ahmed ;
Chaabane, Mohamed .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2010, 18 (06) :1027-1040
[9]   Event-triggered H∞ control for fractional-order time-delay systems [J].
Huong, Dinh Cong .
ASIAN JOURNAL OF CONTROL, 2024, 26 (06) :2906-2915
[10]  
Kilbas A.A., 2006, THEORY APPL FRACTION, DOI DOI 10.1016/S0304-0208(06)80001-0