Multiphase Iterative Algorithm for Mixed-Integer Optimal Control

被引:0
|
作者
Pei, Chaoying [1 ,2 ]
You, Sixiong [3 ]
Di, Yu [4 ]
Dai, Ran [3 ]
机构
[1] Purdue Univ, W Lafayette, IN 47907 USA
[2] Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, Rolla, MO 65409 USA
[3] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA
[4] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
关键词
Optimization Algorithm; Powered Descent Guidance; Mixed Integer Optimal Control; Quadratically Constrained Quadratic Programming; GLOBAL OPTIMIZATION; POWERED DESCENT; NONCONVEX MINLP;
D O I
10.2514/1.G008165
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Mixed-integer optimal control problems (MIOCPs) frequently arise in the domain of optimal control problems (OCPs) when decisions including integer variables are involved. However, existing state-of-the-art approaches for solving MIOCPs are often plagued by drawbacks such as high computational costs, low precision, and compromised optimality. In this study, we propose a novel multiphase scheme coupled with an iterative second-order cone programming (SOCP) algorithm to efficiently and effectively address these challenges in MIOCPs. In the first phase, we relax the discrete decision constraints and account for the terminal state constraints and certain path constraints by introducing them as penalty terms in the objective function. After formulating the problem as a quadratically constrained quadratic programming (QCQP) problem, we propose the iterative SOCP algorithm to solve general QCQPs. In the second phase, we reintroduce the discrete decision constraints to generate the final solution. We substantiate the efficacy of our proposed multiphase scheme and iterative SOCP algorithm through successful application to two practical MIOCPs in planetary exploration missions.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Relaxation methods for mixed-integer optimal control of partial differential equations
    Hante, Falk M.
    Sager, Sebastian
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 55 (01) : 197 - 225
  • [32] Efficient upper and lower bounds for global mixed-integer optimal control
    Sager, Sebastian
    Claeys, Mathieu
    Messine, Frederic
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 61 (04) : 721 - 743
  • [33] Time-Domain Decomposition for Mixed-Integer Optimal Control Problems
    Falk M. Hante
    Richard Krug
    Martin Schmidt
    Applied Mathematics & Optimization, 2023, 87
  • [34] Mixed-Integer Formulations for Optimal Control of Piecewise-Affine Systems
    Marcucci, Tobia
    Tedrake, Russ
    PROCEEDINGS OF THE 2019 22ND ACM INTERNATIONAL CONFERENCE ON HYBRID SYSTEMS: COMPUTATION AND CONTROL (HSCC '19), 2019, : 230 - 239
  • [35] Mixed-Integer DAE Optimal Control Problems: Necessary Conditions and Bounds
    Gerdts, Matthias
    Sager, Sebastian
    CONTROL AND OPTIMIZATION WITH DIFFERENTIAL-ALGEBRAIC CONSTRAINTS, 2012, (23): : 189 - +
  • [36] Time-Domain Decomposition for Mixed-Integer Optimal Control Problems
    Hante, Falk M.
    Krug, Richard
    Schmidt, Martin
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 87 (03):
  • [37] Relaxation methods for hyperbolic PDE mixed-integer optimal control problems
    Hante, Falk M.
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2017, 38 (06): : 1103 - 1110
  • [38] A Voronoi-Based Mixed-Integer Gauss-Newton Algorithm for MINLP Arising in Optimal Control
    Ghezzi, Andrea
    Simpson, Leo
    Buerger, Adrian
    Zeile, Clemens
    Sager, Sebastian
    Diehl, Moritz
    2023 EUROPEAN CONTROL CONFERENCE, ECC, 2023,
  • [39] POD-Based Mixed-Integer Optimal Control of the Heat Equation
    Bachmann Freya
    Beermann Dennis
    Lu Jianjie
    Volkwein Stefan
    Journal of Scientific Computing, 2019, 81 : 48 - 75
  • [40] An Algorithm for Mixed-Integer Optimal Control of Solar Thermal Climate Systems with MPC-Capable Runtime
    Buerger, Adrian
    Zeile, Clemens
    Altmann-Dieses, Angelika
    Sager, Sebastian
    Diehl, Moritz
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 1379 - 1385