Regional and Longitudinal Dynamics of Cyanobacterial Blooms/Cyanobiome and Cyanotoxin Production in the Great Lakes Area

被引:0
作者
Saleem, Faizan [1 ]
Jiang, Jennifer L. [1 ]
Li, Enze [1 ]
Tran, Kevin [1 ]
Boere, Adam [1 ]
Rahman, Mahbuba [1 ]
Paschos, Athanasios [1 ]
Westrick, Judy A. [2 ]
Zastepa, Arthur [3 ]
Edge, Thomas A. [1 ]
Schellhorn, Herb E. [1 ]
机构
[1] McMaster Univ, Dept Biol, Hamilton, ON L8S 4L8, Canada
[2] Wayne State Univ, Lumigen Instrument Ctr, 5101 Cass Ave, Detroit, MI 48202 USA
[3] Canada Ctr Inland Waters, Environm & Climate Change Canada, 867 Lakeshore Rd, Burlington, ON L7S 1A1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
the Great Lakes; DNA sequencing; harmful algal blooms; cyanobacteria; molecular methods; metabarcoding; LYNGBYA-WOLLEI; MICROCYSTIN CONCENTRATIONS; DIVERSITY; COMMUNITIES; TEMPERATURE; REVEALS;
D O I
10.3390/toxins16110471
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Cyanobacteria (blue-green algae) are a diverse group of prokaryotic microorganisms that impact global biogeochemical cycles. Under eutrophic conditions, cyanobacterial species can produce cyanotoxins, resulting in harmful algal blooms (cHABs) that degrade water quality and result in economic and recreational losses. The Laurentian Great Lakes, a key global freshwater source, are increasingly affected by these blooms. To understand the underlying mechanisms in cHAB formation, we investigated microcystin levels, cyanotoxin genes/transcripts, and taxonomic/microcystin metabarcoding across three sampling locations in the Canadian Great Lakes region, including Hamilton Harbour, Bay of Quinte, and Three Mile Lake (Muskoka), to observe the regional and longitudinal cyanobacterial dynamics. The results revealed a positive correlation between microcystin levels, the occurrence of cyanobacterial taxonomic/cyanotoxin molecular markers, and the relative widespread abundance of specific dominant cyanobacterial taxa, including Planktothrix, Microcystis, and Dolichospermum. The Cyanobium genus was not observed in Hamilton Harbor samples during late summer (August to September), while it was consistently observed in the Three Mile Lake and Bay of Quinte samples. Notably, Dolichospermum and saxitoxin genes were predominantly higher in Three Mile Lake (an inland lake), suggesting site-specific characteristics influencing saxitoxin production. Additionally, among the potential microcystin producers, in addition to Microcystis, Hamilton Harbour and Bay of Quinte samples showed consistent presence of less dominant microcystin-producing taxa, including Phormidium and Dolichospermum. This study highlights the complexity of cHAB formation and the variability in cyanotoxin production in specific environments. The findings highlight regional and site-specific factors that can influence cyanobacterial taxonomic and molecular profiles, necessitating the integration of advanced molecular technologies for effective monitoring and targeted management strategies.
引用
收藏
页数:16
相关论文
共 63 条
[1]   Does environmental heterogeneity explain temporal β diversity of small eukaryotic phytoplankton? Example from a tropical eutrophic coastal lagoon [J].
Alves-de-Souza, Catharina ;
Benevides, Tatiane S. ;
Santos, Juliana B. O. ;
Von Dassow, Peter ;
Guillou, Laure ;
Menezes, Mariangela .
JOURNAL OF PLANKTON RESEARCH, 2017, 39 (04) :698-714
[2]  
[Anonymous], 2022, Guidelines for Canadian drinking water quality: Dicamba guideline technical document
[3]  
[Anonymous], 2019, Environment and Climate Change Canada
[4]   Spatial analysis of toxic or otherwise bioactive cyanobacterial peptides in Green Bay, Lake Michigan [J].
Bartlett, Sarah L. ;
Brunner, Shelby L. ;
Klump, J. Val ;
Houghton, Erin M. ;
Miller, Todd R. .
JOURNAL OF GREAT LAKES RESEARCH, 2018, 44 (05) :924-933
[5]   Dating the rise of atmospheric oxygen [J].
Bekker, A ;
Holland, HD ;
Wang, PL ;
Rumble, D ;
Stein, HJ ;
Hannah, JL ;
Coetzee, LL ;
Beukes, NJ .
NATURE, 2004, 427 (6970) :117-120
[6]   Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J].
Bolyen, Evan ;
Rideout, Jai Ram ;
Dillon, Matthew R. ;
Bokulich, NicholasA. ;
Abnet, Christian C. ;
Al-Ghalith, Gabriel A. ;
Alexander, Harriet ;
Alm, Eric J. ;
Arumugam, Manimozhiyan ;
Asnicar, Francesco ;
Bai, Yang ;
Bisanz, Jordan E. ;
Bittinger, Kyle ;
Brejnrod, Asker ;
Brislawn, Colin J. ;
Brown, C. Titus ;
Callahan, Benjamin J. ;
Caraballo-Rodriguez, Andres Mauricio ;
Chase, John ;
Cope, Emily K. ;
Da Silva, Ricardo ;
Diener, Christian ;
Dorrestein, Pieter C. ;
Douglas, Gavin M. ;
Durall, Daniel M. ;
Duvallet, Claire ;
Edwardson, Christian F. ;
Ernst, Madeleine ;
Estaki, Mehrbod ;
Fouquier, Jennifer ;
Gauglitz, Julia M. ;
Gibbons, Sean M. ;
Gibson, Deanna L. ;
Gonzalez, Antonio ;
Gorlick, Kestrel ;
Guo, Jiarong ;
Hillmann, Benjamin ;
Holmes, Susan ;
Holste, Hannes ;
Huttenhower, Curtis ;
Huttley, Gavin A. ;
Janssen, Stefan ;
Jarmusch, Alan K. ;
Jiang, Lingjing ;
Kaehler, Benjamin D. ;
Bin Kang, Kyo ;
Keefe, Christopher R. ;
Keim, Paul ;
Kelley, Scott T. ;
Knights, Dan .
NATURE BIOTECHNOLOGY, 2019, 37 (08) :852-857
[7]   Lyngbya wollei in western Lake Erie [J].
Bridgeman, Thomas B. ;
Penamon, Wanda A. .
JOURNAL OF GREAT LAKES RESEARCH, 2010, 36 (01) :167-171
[8]   FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool [J].
Brown, Joseph ;
Pirrung, Meg ;
McCue, Lee Ann .
BIOINFORMATICS, 2017, 33 (19) :3137-3139
[9]  
Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/nmeth.3869, 10.1038/NMETH.3869]
[10]   Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes [J].
Carmichael, Wayne W. ;
Boyer, Gregory L. .
HARMFUL ALGAE, 2016, 54 :194-212