Skew-symmetric biderivations and linear commuting maps on the algebra SW(b)

被引:0
作者
Liu, Yan [1 ]
Ma, Yao [1 ]
Chen, Liangyun [1 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
关键词
Biderivation; commuting map; Schrodinger algebra; Witt algebra; CLASSIFICATION; MODULES; W(A;
D O I
10.1080/00927872.2024.2421419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the parameter b is an element of C, denote the semi-direct product of the Witt algebra and the loop Schrodinger algebra as SW(b). In this paper, we investigate the skew-symmetric biderivations of this Lie algebra. As an application, we give the explicit form of each linear commuting map on SW(b). It turns out that on SW(b) we have only inner biderivations and standard linear commuting maps except in the case b=-12.
引用
收藏
页码:1755 / 1769
页数:15
相关论文
共 18 条
[1]   ON GENERALIZED BIDERIVATIONS AND RELATED MAPS [J].
BRESAR, M .
JOURNAL OF ALGEBRA, 1995, 172 (03) :764-786
[2]   Commuting maps: A survey [J].
Bresar, M .
TAIWANESE JOURNAL OF MATHEMATICS, 2004, 8 (03) :361-397
[3]  
Bresar M, 2018, J LIE THEORY, V28, P885
[4]   Classification of simple Harish-Chandra modules for map (super)algebras related to the Virasoro algebra [J].
Cai, Yan-an ;
Lu, Rencai ;
Wang, Yan .
JOURNAL OF ALGEBRA, 2021, 570 :397-415
[5]   Biderivations and linear commuting maps on the restricted Cartan-type Lie algebras W(n; (1)under-bar) and S(n; (1)under-bar) [J].
Chang, Yuan ;
Chen, Liangyun .
LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (08) :1625-1636
[6]   Skew-symmetric biderivations and linear commuting maps of Kac-Moody algebras [J].
Chen, Zhengxin ;
Wang, Yu .
LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (05) :867-874
[7]   BIDERIVATIONS AND LINEAR COMMUTING MAPS ON SIMPLE GENERALIZED WITT ALGEBRAS OVER A FIELD [J].
Chen, Zhengxin .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2016, 31 :1-12
[8]   Biderivations and linear commuting maps on the Lie algebra gca [J].
Cheng, Xiao ;
Wang, Minjing ;
Sun, Jiancai ;
Zhang, Honglian .
LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (12) :2483-2493
[9]   LOW-DIMENSIONAL COHOMOLOGY GROUPS OF THE LIE ALGEBRAS W(a, b) [J].
Gao, Shoulan ;
Jiang, Cuipo ;
Pei, Yufeng .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (02) :397-423
[10]  
Han X, 2016, J LIE THEORY, V26, P777