Fault diagnosis of rolling bearing with variable working conditions in noisy environment based on dynamic soft threshold and attention mechanism

被引:0
|
作者
Li, Ankang [1 ]
Yao, Dechen [1 ,2 ]
Yang, Jianwei [1 ,2 ]
Zhou, Tao [1 ]
机构
[1] Beijing Univ Civil Engn & Architecture, Sch Mech Elect & Vehicle Engn, Beijing 100044, Peoples R China
[2] Beijing Univ Civil Engn & Architecture, Beijing Key Lab Performance Guarantee Urban Rail T, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-source domains; fault diagnosis; noise; domain adaptation;
D O I
10.1088/1361-6501/ad9bd0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In response to the complex and variable working conditions faced by rolling bearings during actual operation, as well as the issue of vibration signal acquisition being easily disrupted by noise interference, the study describes the multi-source domain anti-noise rolling bearing failure detection approach (MEDThresNet). The purpose of this model's design is to solve the challenges of a lack of corresponding sample data and noisy signals in bearing fault classification. Using multi-condition source domains, as opposed to a single working condition source domain data, might help gain information from diverse domains and minimize overreliance on data from a specific working condition source domain. This can significantly increase the model's generalization and robustness, and fault identification accuracy. Convolutional modules with soft thresholding and attention mechanisms are applied in this network structure. Soft thresholding helps to suppress noise in the data during the training phase while keeping critical characteristics. The attention mechanism, on the other hand, allows the model to automatically focus on the critical areas of the defect information in the bearing vibration signals throughout the training phase, hence improving the network's performance and generalization ability. Furthermore, the network aligns the joint distribution of source and target domain data across many particular levels using the joint maximum mean discrepancy approach to accomplish unsupervised domain adaptation. This allows the network to successfully transfer information learnt from the source domain data of the faulty bearing to the target domain of the faulty bearing, improving the model's generalizability on the target domain. This research tests the network on two datasets with varied working conditions, CWRU and Ottawa, and the findings demonstrate that the network is high robustness and accurate for multi-source domain transfer diagnosis in noisy environments.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] FAULT DIAGNOSIS OF ROLLING BEARING UNDER MARINE NOISY ENVIRONMENTS AND VARYING WORKING CONDITIONS
    Gao, Chao
    Guo, Yongjin
    Han, Bing
    Liang, Xiaofeng
    Wang, Hongdong
    Yi, Hong
    PROCEEDINGS OF ASME 2023 42ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2023, VOL 2, 2023,
  • [2] A fault diagnosis method based on dilated convolution and attention for rolling bearing under multiple working conditions and noisy environments
    Zhang, Hui
    Liu, Shengdong
    Lv, Ziwei
    Sang, Zhenlong
    Li, Fangning
    JOURNAL OF VIBROENGINEERING, 2023, 25 (07) : 1257 - 1272
  • [3] A novel fault diagnosis model of rolling bearing under variable working conditions based on attention mechanism and domain adversarial neural network
    Liu, Zhiping
    Zhang, Peng
    Yu, Yannan
    Li, Mengzhen
    Zeng, Zhuo
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, 38 (03) : 1101 - 1111
  • [4] A novel fault diagnosis model of rolling bearing under variable working conditions based on attention mechanism and domain adversarial neural network
    Zhiping Liu
    Peng Zhang
    Yannan Yu
    Mengzhen Li
    Zhuo Zeng
    Journal of Mechanical Science and Technology, 2024, 38 : 1101 - 1111
  • [5] A novel hierarchical transferable network for rolling bearing fault diagnosis under variable working conditions
    Chaoyang Weng
    Baochun Lu
    Qian Gu
    Xiaoli Zhao
    Nonlinear Dynamics, 2023, 111 : 11315 - 11334
  • [6] A novel hierarchical transferable network for rolling bearing fault diagnosis under variable working conditions
    Weng, Chaoyang
    Lu, Baochun
    Gu, Qian
    Zhao, Xiaoli
    NONLINEAR DYNAMICS, 2023, 111 (12) : 11315 - 11334
  • [7] Multi-source rolling bearing fault diagnosis under variable working conditions based on GCN
    Xie F.
    Wang L.
    Song M.
    Fan Q.
    Sun E.
    Zhu H.
    Journal of Railway Science and Engineering, 2024, 21 (05) : 2109 - 2118
  • [8] The fault diagnosis method of rolling bearing under variable working conditions based on deep transfer learning
    Dong, Shaojiang
    He, Kun
    Tang, Baoping
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (11)
  • [9] Fault Diagnosis of Rolling Bearing Under Variable Working Conditions Based on CWT and T-ResNet
    Diao, Ningkun
    Wang, Zhicheng
    Ma, Huaixiang
    Yang, Wenbin
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2023, 11 (08) : 3747 - 3757
  • [10] Rolling Bearing Fault Diagnosis under Variable Working Conditions Based on Joint Distribution Adaptation and SVM
    Li, Ming
    Sun, Zhao-Hui
    He, Weihui
    Qiu, Siqi
    Liu, Bo
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,