D-DPCC: Deep Dynamic Point Cloud Compression via 3D Motion Prediction

被引:0
|
作者
Fan, Tingyu [1 ]
Gao, Linyao [1 ]
Xu, Yiling [1 ]
Li, Zhu [2 ]
Wang, Dong [3 ]
机构
[1] Shanghai Jiao Tong Univ, Cooperat Medianet Innovat Ctr, Shanghai, Peoples R China
[2] Univ Missouri, Kansas City, MO USA
[3] Guangdong OPPO Mobile Telecommun Corp Ltd, Dongguan, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The non-uniformly distributed nature of the 3D dynamic point cloud (DPC) brings significant challenges to its high-efficient inter-frame compression. This paper proposes a novel 3D sparse convolution-based Deep Dynamic Point Cloud Compression (D-DPCC) network to compensate and compress the DPC geometry with 3D motion estimation and motion compensation in the feature space. In the proposed D-DPCC network, we design a Multiscale Motion Fusion (MMF) module to accurately estimate the 3D optical flow between the feature representations of adjacent point cloud frames. Specifically, we utilize a 3D sparse convolution-based encoder to obtain the latent representation for motion estimation in the feature space and introduce the proposed MMF module for fused 3D motion embedding. Besides, for motion compensation, we propose a 3D Adaptively Weighted Interpolation (3DAWI) algorithm with a penalty coefficient to adaptively decrease the impact of distant neighbors. We compress the motion embedding and the residual with a lossy autoencoder-based network. To our knowledge, this paper is the first work proposing an end-to-end deep dynamic point cloud compression framework. The experimental result shows that the proposed D-DPCC framework achieves an average 76% BD-Rate (Bjontegaard Delta Rate) gains against state-of-the-art Video-based Point Cloud Compression (V-PCC) v13 in inter mode.
引用
收藏
页码:898 / 904
页数:7
相关论文
共 50 条
  • [21] Point AE-DCGAN: A deep learning model for 3D point cloud lossy geometry compression
    Xu, Jiacheng
    Fang, Zhijun
    Gao, Yongbin
    Ma, Siwei
    Jin, Yaochu
    Zhou, Heng
    Wang, Anjie
    2021 DATA COMPRESSION CONFERENCE (DCC 2021), 2021, : 379 - 379
  • [22] Dynamic 3D Point Cloud Sequences as 2D Videos
    Zeng, Yiming
    Hou, Junhui
    Zhang, Qijian
    Ren, Siyu
    Wang, Wenping
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 9371 - 9386
  • [23] DEEP LEARNING FOR SEMANTIC SEGMENTATION OF 3D POINT CLOUD
    Malinverni, E. S.
    Pierdicca, R.
    Paolanti, M.
    Martini, M.
    Morbidoni, C.
    Matrone, F.
    Lingua, A.
    27TH CIPA INTERNATIONAL SYMPOSIUM: DOCUMENTING THE PAST FOR A BETTER FUTURE, 2019, 42-2 (W15): : 735 - 742
  • [24] Point Cloud Annotation Methods for 3D Deep Learning
    O'Mahony, Niall
    Campbell, Sean
    Carvalho, Anderson
    Krpalkova, Lenka
    Riordan, Daniel
    Walsh, Joseph
    2019 13TH INTERNATIONAL CONFERENCE ON SENSING TECHNOLOGY (ICST), 2019,
  • [25] A Dynamic 3D Point Cloud Dataset for Immersive Applications
    Sun, Yuan-Chun
    Huang, I-Chun
    Shi, Yuang
    Ooi, Wei Tsang
    Huang, Chun-Ying
    Hsu, Cheng-Hsin
    PROCEEDINGS OF THE 2023 PROCEEDINGS OF THE 14TH ACM MULTIMEDIA SYSTEMS CONFERENCE, MMSYS 2023, 2023, : 376 - 383
  • [26] Video coding of dynamic 3D point cloud data
    Schwarz, Sebastian
    Sheikhipour, Nahid
    Sevom, Vida Fakour
    Hannuksela, Miska M.
    APSIPA TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING, 2019, 8 (01)
  • [27] Dynamic 3D Scene Analysis by Point Cloud Accumulation
    Huang, Shengyu
    Gojcic, Zan
    Huang, Jiahui
    Wieser, Andreas
    Schindler, Konrad
    COMPUTER VISION, ECCV 2022, PT XXXVIII, 2022, 13698 : 674 - 690
  • [28] Dynamic Convolution for 3D Point Cloud Instance Segmentation
    He, Tong
    Shen, Chunhua
    van den Hengel, Anton
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5697 - 5711
  • [29] Dynamic 3D Point Cloud Streaming: Distortion and Concealment
    Wu, Cheng-Hao
    Li, Xiner
    Rajesh, Rahul
    Ooi, Wei Tsang
    Hsu, Cheng-Hsin
    PROCEEDINGS OF THE 31ST ACM WORKSHOP ON NETWORK AND OPERATING SYSTEMS SUPPORT FOR DIGITAL AUDIO AND VIDEO (NOSSDAV '21), 2021, : 99 - 105
  • [30] Error Concealment of Dynamic 3D Point Cloud Streaming
    Hung, Tzu-Kuan
    Huang, I-Chun
    Cox, Samuel Rhys
    Ooi, Wei Tsang
    Hsu, Cheng-Hsin
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3134 - 3142