D-DPCC: Deep Dynamic Point Cloud Compression via 3D Motion Prediction

被引:0
|
作者
Fan, Tingyu [1 ]
Gao, Linyao [1 ]
Xu, Yiling [1 ]
Li, Zhu [2 ]
Wang, Dong [3 ]
机构
[1] Shanghai Jiao Tong Univ, Cooperat Medianet Innovat Ctr, Shanghai, Peoples R China
[2] Univ Missouri, Kansas City, MO USA
[3] Guangdong OPPO Mobile Telecommun Corp Ltd, Dongguan, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The non-uniformly distributed nature of the 3D dynamic point cloud (DPC) brings significant challenges to its high-efficient inter-frame compression. This paper proposes a novel 3D sparse convolution-based Deep Dynamic Point Cloud Compression (D-DPCC) network to compensate and compress the DPC geometry with 3D motion estimation and motion compensation in the feature space. In the proposed D-DPCC network, we design a Multiscale Motion Fusion (MMF) module to accurately estimate the 3D optical flow between the feature representations of adjacent point cloud frames. Specifically, we utilize a 3D sparse convolution-based encoder to obtain the latent representation for motion estimation in the feature space and introduce the proposed MMF module for fused 3D motion embedding. Besides, for motion compensation, we propose a 3D Adaptively Weighted Interpolation (3DAWI) algorithm with a penalty coefficient to adaptively decrease the impact of distant neighbors. We compress the motion embedding and the residual with a lossy autoencoder-based network. To our knowledge, this paper is the first work proposing an end-to-end deep dynamic point cloud compression framework. The experimental result shows that the proposed D-DPCC framework achieves an average 76% BD-Rate (Bjontegaard Delta Rate) gains against state-of-the-art Video-based Point Cloud Compression (V-PCC) v13 in inter mode.
引用
收藏
页码:898 / 904
页数:7
相关论文
共 50 条
  • [11] Graph-Based Compression of Dynamic 3D Point Cloud Sequences
    Thanou, Dorina
    Chou, Philip A.
    Frossard, Pascal
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (04) : 1765 - 1778
  • [12] IDEA-Net: Dynamic 3D Point Cloud Interpolation via Deep Embedding Alignment
    Zeng, Yiming
    Qian, Yue
    Zhang, Qijian
    Hou, Junhui
    Yuan, Yixuan
    He, Ying
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6328 - 6337
  • [13] 3D Point Cloud Restoration via Deep Learning: A Comprehensive Survey
    Liu C.
    Wei M.
    Guo Y.
    Wei, Mingqiang (mqwei@nuaa.edu.cn), 1936, Institute of Computing Technology (33): : 1936 - 1952
  • [14] 3D DYNAMIC POINT CLOUD INPAINTING VIA TEMPORAL CONSISTENCY ON GRAPHS
    Fu, Zeqing
    Hu, Wei
    Guo, Zongming
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [15] LOSSY LIDAR POINT CLOUD COMPRESSION VIA CYLINDRICAL 3D CONVOLUTION NETWORKS
    Gao, Yelang
    Zhang, Pingping
    Wang, Xu
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 3508 - 3512
  • [16] 3D Motion Estimation and Compensation Method for Video-Based Point Cloud Compression
    Kim, Junsik
    Im, Jiheon
    Rhyu, Sungryeul
    Kim, Kyuheon
    IEEE ACCESS, 2020, 8 : 83538 - 83547
  • [17] Comparative Study of 3D Point Cloud Compression Methods
    Bui, Mai
    Chang, Lin-Ching
    Liu, Hang
    Zhao, Qi
    Chen, Genshe
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 5859 - 5861
  • [18] VOLUMETRIC 3D POINT CLOUD ATTRIBUTE COMPRESSION: LEARNED POLYNOMIAL BILATERAL FILTER FOR PREDICTION
    Do, Tam Thuc
    Chou, Philip A.
    Cheung, Gene
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 3915 - 3919
  • [19] Point Cloud Domain Adaptation via Masked Local 3D Structure Prediction
    Liang, Hanxue
    Fan, Hehe
    Fan, Zhiwen
    Wang, Yi
    Chen, Tianlong
    Cheng, Yu
    Wang, Zhangyang
    COMPUTER VISION - ECCV 2022, PT III, 2022, 13663 : 156 - 172
  • [20] Motion Guided Deep Dynamic 3D Garments
    Zhang, Meng
    Ceylan, Duygu
    Mitra, Niloy J.
    ACM TRANSACTIONS ON GRAPHICS, 2022, 41 (06):