A new auxiliary variables-based estimator for population distribution function under stratified random sampling and non-response

被引:0
作者
Ahmad, Sohail [1 ]
Iftikhar, Hasnain [2 ,7 ]
Qureshi, Moiz [2 ,3 ]
Khan, Ilyas [4 ]
Omer, Abdoalrahman S. A. [5 ]
Armas, Elias A. Torres [6 ]
Lopez-Gonzales, Javier Linkolk [7 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
[2] Quaid i Azam Univ, Dept Stat, Islamabad 45320, Pakistan
[3] Univ Sindh, Dept Stat, Jamshoro 76080, Sindh, Pakistan
[4] Majmaah Univ, Coll Sci Al Zulfi, Dept Math, Al Majmaah 11952, Saudi Arabia
[5] Al Fasher Univ, Coll Educ, Dept Math, Al Fashir, Sudan
[6] Univ Nacl Toribio Rodriguez de Mendoza, Inst Invest Estudios Estadiat & Control Calidad, Chachapoyas, Peru
[7] Univ Peruana Union, Escuela Posgrad, Lima 15468, Peru
关键词
RATIO ESTIMATORS; IMPROVEMENT; FAMILY;
D O I
10.1038/s41598-025-98246-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Population distribution function is a particular area in sample surveys, and several researchers have worked to improve the accuracy of this study by using the auxiliary data. Recent studies estimate the population distribution function by applying stratified random sampling and non-response techniques, but there are some limitations in using the auxiliary data. However, we improve this study, which aims to maximize the accuracy of estimating the population distribution function under the combined effect of stratified random sampling and non-response groups. To achieve this goal in the condition of both sampling techniques, we introduce the use of a study variable and two auxiliary variables (mean and ranks). We conduct various estimations for real-world populations for theoretical and numerical findings. The results obtained from these estimators consistently demonstrate the better performance of the proposed classes of estimators over the currently existing estimators. This work also finds a comprehensive simulation analysis to evaluate the performance of various estimators. These findings show that the effectiveness of the proposed estimator significantly improves estimation accuracy. For additional validation and understanding of the relative effectiveness of the proposed estimators, this study also provides comparative graphs showing their performance relative to other current estimators.
引用
收藏
页数:25
相关论文
共 44 条
[1]   Improvement in estimating the population mean in simple random sampling using information on auxiliary attribute [J].
Abd-Elfattah, A. M. ;
El-Sherpieny, E. A. ;
Mohamed, S. M. ;
Abdou, O. F. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (12) :4198-4202
[2]  
Ahmad S., 2021, Statistics, Computing and Interdisciplinary Research, V3, P29, DOI DOI 10.52700/SCIR.V3I1.25
[3]   A simulation study: An enhanced generalized class of estimators for estimation of population proportion using twofold auxiliary attribute [J].
Ahmad, Sohaib ;
Zahid, Erum ;
Shabbir, Javid ;
Aamir, Muhammad ;
Emam, Walid ;
Tashkandy, Yusra ;
Ahmad, Sohail .
HELIYON, 2023, 9 (06)
[4]   A new improved generalized class of estimators for population distribution function using auxiliary variable under simple random sampling [J].
Ahmad, Sohaib ;
Ullah, Kalim ;
Zahid, Erum ;
Shabbir, Javid ;
Aamir, Muhammad ;
Alshanbari, Huda M. ;
El-Bagoury, Abd Al-Aziz Hosni .
SCIENTIFIC REPORTS, 2023, 13 (01)
[5]   An improved family of unbiased ratio estimators for a population distribution function [J].
Ahmad, Sohail ;
Qureshi, Moiz ;
Iftikhar, Hasnain ;
Rodrigues, Paulo Canas ;
Rehman, Mohd Ziaur .
AIMS MATHEMATICS, 2025, 10 (01) :1061-1084
[6]   A generalized exponential-type estimator for population mean using auxiliary attributes [J].
Ahmad, Sohail ;
Arslan, Muhammad ;
Khan, Aamna ;
Shabbir, Javid .
PLOS ONE, 2021, 16 (05)
[7]   A few-shot identification method for stochastic dynamical systems based on residual multipeaks adaptive sampling [J].
An, Xiao-Kai ;
Du, Lin ;
Jiang, Feng ;
Zhang, Yu-Jia ;
Deng, Zi-Chen ;
Kurths, Juergen .
CHAOS, 2024, 34 (07)
[8]  
Bahl S., 1991, Information and Optimization Sciences, V12, P159, DOI [10.1080/02522667.1991.10699058, DOI 10.1080/02522667.1991.10699058]
[9]  
CHAMBERS RL, 1986, BIOMETRIKA, V73, P597
[10]   PROPERTIES OF ESTIMATORS OF THE FINITE POPULATION-DISTRIBUTION FUNCTION [J].
CHAMBERS, RL ;
DORFMAN, AH ;
HALL, P .
BIOMETRIKA, 1992, 79 (03) :577-582