Phosphorus-doped torreya shell-derived hard carbon anodes for ultra-low capacity decay rate of sodium-ion batteries

被引:0
作者
Xu, Zibin [1 ]
Wu, Jun [1 ]
Cui, Haonan [1 ]
Xu, Junming [1 ]
Sheng, Weiqin [1 ]
Ni, Wenbin [2 ]
Zhou, Xiaochong [2 ]
机构
[1] Hangzhou Dianzi Univ, Sch Elect & Informat, Hangzhou 310018, Peoples R China
[2] Huzhou Horizontal Na Energy Technol Co Ltd, Chengye Intelligent Ctr, 819,Xisaishan Rd,Longxi St, Huzhou 313000, Peoples R China
关键词
Sodium-ion batteries; Anode; Hard carbon; Torreya shell; Phosphorus doping;
D O I
10.1016/j.matlet.2025.138250
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hard carbon anodes for sodium-ion batteries (SIBs) still suffer from poor initial coulombic efficiency and an ambiguous Na+ storage mechanism. Here, we proposed a novel phosphorus-doped torreya shell-derived hard carbon (P-TSHC) as an anode for SIBs via a feasible two-step carbonization technique. Effects of P contents in hard carbon on porous structure, plane d-spacing, and electrochemical properties were investigated. In particular, P-TSHC15 exhibits the most excellent electrochemical performance with a superior rate capability up to 8 A g-1 and an ultra-low capacity decay rate of 0.075 % per cycle within 1000 cycles at 1 A g-. 1 This should be mainly attributed to P-doping, which expands the interlayer spacing for better Na+ accommodation in mesoporous filling mechanism, generates more defects and specific surface areas, and provides transport channels for Na+, thereby increasing the low-voltage plateau capacity. This work will provide a route for further property optimization of biomass hard carbon for SIBs.
引用
收藏
页数:5
相关论文
共 15 条
  • [1] Zhang M., Li Y., Wu F., Et al., Nano Energy, 82, (2021)
  • [2] Li X., Zhang Y., Zhu Y., Et al., Mater Lett., 366, (2024)
  • [3] Wei C., Dang W., Li M., Et al., Mater Lett., 330, (2023)
  • [4] Chen S., Tang K., Song F., Et al., Nanotechnology, 33, 5, (2022)
  • [5] Alvira D., Antoran D., Manya J.J., Chem. Eng. J., 447, (2022)
  • [6] Chen X., Liu C., Fang Y., Et al., Carbon Energ., 4, 6, (2022)
  • [7] He H., Huang D., Tang Y., Et al., Nano Energy, 57, (2019)
  • [8] Xiao T., Rojo X.L., ChemSusChem, 12, 1, (2019)
  • [9] Dou X., Hasa I., Saurel D., Et al., Mater. Today, 23, (2019)
  • [10] Qian Y., Jiang S., Li Y., Et al., Adv. Energy Mater., 9, 34, (2019)